Heat Transfer Analysis of Rectangular Channel Plate Heat Sink

In order to improve the simulation effects of space cold black environment, this paper described a rectangular channel plate heat sink. By using fluid mechanics theory and finite element method, the internal fluid flow and heat transfer in heat sink was numerically simulated to analyze the impact of channel structural on fluid flow and heat transfer. The result showed that heat sink temperature uniformity is well, and the impact of channel structural on the heat sink temperature uniformity is not significant. The channel depth and spacing are important factors which affect the fluid flow and heat transfer in the heat sink. The two factors of heat transfer and resistance need to be considered comprehensively to determine the optimal flow structure parameters.

An Automated Method to Segment and Classify Masses in Mammograms

Mammography is the most effective procedure for an early diagnosis of the breast cancer. Nowadays, people are trying to find a way or method to support as much as possible to the radiologists in diagnosis process. The most popular way is now being developed is using Computer-Aided Detection (CAD) system to process the digital mammograms and prompt the suspicious region to radiologist. In this paper, an automated CAD system for detection and classification of massive lesions in mammographic images is presented. The system consists of three processing steps: Regions-Of- Interest detection, feature extraction and classification. Our CAD system was evaluated on Mini-MIAS database consisting 322 digitalized mammograms. The CAD system-s performance is evaluated using Receiver Operating Characteristics (ROC) and Freeresponse ROC (FROC) curves. The archived results are 3.47 false positives per image (FPpI) and sensitivity of 85%.

A Purpose Based Usage Access Control Model

As privacy becomes a major concern for consumers and enterprises, many research have been focused on the privacy protecting technology in recent years. In this paper, we present a comprehensive approach for usage access control based on the notion purpose. In our model, purpose information associated with a given data element specifies the intended use of the subjects and objects in the usage access control model. A key feature of our model is that it allows when an access is required, the access purpose is checked against the intended purposes for the data item. We propose an approach to represent purpose information to support access control based on purpose information. Our proposed solution relies on usage access control (UAC) models as well as the components which based on the notions of the purpose information used in subjects and objects. Finally, comparisons with related works are analyzed.

Physical-Chemical Surface Characterization of Lake Nasser Sediments

Lake Nasser is one of the largest reservoirs in the world. Over 120 million metric tons of sediments are deposited in its dead storage zone every year. The main objective of the present work was to determine the physical and chemical characteristics of Lake Nasser sediments. The sample had a relatively low surface area of 2.9 m2/g which increased more than 3-fold upon chemical activation. The main chemical elements of the raw sediments were C, O and Si with some traces of Al, Fe and Ca. The organic functional groups for the tested sample included O-H, C=C, C-H and C-O, with indications of Si-O and other metal-C and/or metal-O bonds normally associated with clayey materials. Potentiometric titration of the sample in different ionic strength backgrounds revealed an alkaline material with very strong positive surface charge at pH values just a little less than the pH of zero charge which is ~9. Surface interactions of the sediments with the background electrolyte were significant. An advanced surface complexation model was able to capture these effects, employing a single-site approach to represent protolysis reactions in aqueous solution, and to determine the significant surface species in the pH range of environmental interest.

The Effects of Perceived Organizational Support, Abusive Supervision, and Exchange Ideology on Employees- Task Performance

Employee-s task performance has been recognized as a core contributor to overall organizational effectiveness. Hence, verifying the determinants of task performance is one of the most important research issues. This study tests the influence of perceived organizational support, abusive supervision, and exchange ideology on employee-s task performance. We examined our hypotheses by collecting self-reported data from 413 Korean employees in different organizations. Our all hypotheses gained support from the results. Implications for research and directions for future research are discussed.

Optimization and GIS-Based Intelligent Decision Support System for Urban Transportation Systems Analysis

Optimization plays an important role in most real world applications that support decision makers to take the right decision regarding the strategic directions and operations of the system they manage. Solutions for traffic management and traffic congestion problems are considered major problems that most decision making authorities for cities around the world are looking for. This review paper gives a full description of the traffic problem as part of the transportation planning process and present a view as a framework of urban transportation system analysis where the core of the system is a transportation network equilibrium model that is based on optimization techniques and that can also be used for evaluating an alternative solution or a combination of alternative solutions for the traffic congestion. Different transportation network equilibrium models are reviewed from the sequential approach to the multiclass combining trip generation, trip distribution, modal split, trip assignment and departure time model. A GIS-Based intelligent decision support system framework for urban transportation system analysis is suggested for implementation where the selection of optimized alternative solutions, single or packages, will be based on an intelligent agent rather than human being which would lead to reduction in time, cost and the elimination of the difficulty, by human being, for finding the best solution to the traffic congestion problem.

Computable Function Representations Using Effective Chebyshev Polynomial

We show that Chebyshev Polynomials are a practical representation of computable functions on the computable reals. The paper presents error estimates for common operations and demonstrates that Chebyshev Polynomial methods would be more efficient than Taylor Series methods for evaluation of transcendental functions.

3-D Reconstruction of Objects Using Digital Fringe Projection: Survey and Experimental Study

Three-dimensional reconstruction of small objects has been one of the most challenging problems over the last decade. Computer graphics researchers and photography professionals have been working on improving 3D reconstruction algorithms to fit the high demands of various real life applications. Medical sciences, animation industry, virtual reality, pattern recognition, tourism industry, and reverse engineering are common fields where 3D reconstruction of objects plays a vital role. Both lack of accuracy and high computational cost are the major challenges facing successful 3D reconstruction. Fringe projection has emerged as a promising 3D reconstruction direction that combines low computational cost to both high precision and high resolution. It employs digital projection, structured light systems and phase analysis on fringed pictures. Research studies have shown that the system has acceptable performance, and moreover it is insensitive to ambient light. This paper presents an overview of fringe projection approaches. It also presents an experimental study and implementation of a simple fringe projection system. We tested our system using two objects with different materials and levels of details. Experimental results have shown that, while our system is simple, it produces acceptable results.

Sustainable Development Contributions among University of Madeira (Portugal) Students

Sustainable development is highly dependent on the implementation of environmental education programs, which has as its ultimate goal to produce environmentally literate citizens that undertake environmentally friendly actions. Efforts on environmental education along past years are now perceived on the increase of citizens awareness on European countries and, particularly, in Portugal. However, we still have a lack of information on the prevalence of specific behaviors that contributes to sustainability, influenced by a new attitude toward the environment. The determination of pro-environmental behaviors prevalence in higher education students is an important approach to understand to which extend the next leading generation is, in practice, committed with the goals of sustainable development. Therefore, present study evaluates the prevalence of a specific set of behaviors (water savings, energy savings, environmental criteria on shopping, and mobility) on the University of Madeira students and discusses their commitment with sustainable development.

Design of a Neural Networks Classifier for Face Detection

Face detection and recognition has many applications in a variety of fields such as security system, videoconferencing and identification. Face classification is currently implemented in software. A hardware implementation allows real-time processing, but has higher cost and time to-market. The objective of this work is to implement a classifier based on neural networks MLP (Multi-layer Perceptron) for face detection. The MLP is used to classify face and non-face patterns. The systm is described using C language on a P4 (2.4 Ghz) to extract weight values. Then a Hardware implementation is achieved using VHDL based Methodology. We target Xilinx FPGA as the implementation support.

The Experiences of Coronary Heart Disease Patients: Biopsychosocial Perspective

Biological, psychological and social experiences and perceptions of healthcare services in patients medically diagnosed of coronary heart disease were investigated using a sample of 10 participants whose responses to the in-depth interview questions were analyzed based on inter-and-intra-case analyses. The results obtained revealed that advancing age, single status, divorce and/or death of spouse and the issue of single parenting negatively impacted patients- biopsychosocial experiences. The patients- experiences of physical signs and symptoms, anxiety and depression, past serious medical conditions, use of self-prescribed medications, family history of poor mental/medical or physical health, nutritional problems and insufficient physical activities heightened their risk of coronary attack. Collectivist culture served as a big source of relieve to the patients. Patients- temperament, experience of different chronic life stresses/challenges, mood alteration, regular drinking, smoking/gambling, and family/social impairments compounded their health situation. Patients were satisfied with the biomedical services rendered by the healthcare personnel, whereas their psychological and social needs were not attended to. Effective procedural treatment model, a holistic and multidimensional approach to the treatment of heart disease patients was proposed.

Comparison of Alternative Models to Predict Lean Meat Percentage of Lamb Carcasses

The objective of this study was to develop and compare alternative prediction equations of lean meat proportion (LMP) of lamb carcasses. Forty (40) male lambs, 22 of Churra Galega Bragançana Portuguese local breed and 18 of Suffolk breed were used. Lambs were slaughtered, and carcasses weighed approximately 30 min later in order to obtain hot carcass weight (HCW). After cooling at 4º C for 24-h a set of seventeen carcass measurements was recorded. The left side of carcasses was dissected into muscle, subcutaneous fat, inter-muscular fat, bone, and remainder (major blood vessels, ligaments, tendons, and thick connective tissue sheets associated with muscles), and the LMP was evaluated as the dissected muscle percentage. Prediction equations of LMP were developed, and fitting quality was evaluated through the coefficient of determination of estimation (R2 e) and standard error of estimate (SEE). Models validation was performed by k-fold crossvalidation and the coefficient of determination of prediction (R2 p) and standard error of prediction (SEP) were computed. The BT2 measurement was the best single predictor and accounted for 37.8% of the LMP variation with a SEP of 2.30%. The prediction of LMP of lamb carcasses can be based simple models, using as predictors the HCW and one fat thickness measurement.

Comparison of Two Airfoil Sections for Application in Straight-Bladed Darrieus VAWT

This paper presents a model for the evaluation of energy performance and aerodynamic forces acting on a small straight-bladed Darrieus-type vertical axis wind turbine depending on blade geometrical section. It consists of an analytical code coupled to a solid modeling software, capable of generating the desired blade geometry based on the desired blade design geometric parameters. Such module is then linked to a finite volume commercial CFD code for the calculation of rotor performance by integration of the aerodynamic forces along the perimeter of each blade for a full period of revolution.After describing and validating the computational model with experimental data, the results of numerical simulations are proposed on the bases of two candidate airfoil sections, that is a classical symmetrical NACA 0021 blade profile and the recently developed DU 06-W-200 non-symmetric and laminar blade profile.Through a full CFD campaign of analysis, the effects of blade geometrical section on angle of attack are first investigated and then the overall rotor torque and power are analyzed as a function of blade azimuthal position, achieving a numerical quantification of the influence of airfoil geometry on overall rotor performance.

Study on Numerical Simulation Applied to Moisture Buffering Design Method – The Case Study of Pine Wood in a Single Zone Residential Unit in Taiwan

A good green building design project, designers should consider not only energy consumption, but also healthy and comfortable needs of inhabitants. In recent years, the Taiwan government paid attentions on both carbon reduction and indoor air quality issues, which be presented in the legislation of Building Codes and other regulations. Taiwan located in hot and humid climates, dampness in buildings leads to significant microbial pollution and building damage. This means that the high temperature and humidity present a serious indoor air quality issue. The interactions between vapor transfers and energy fluxes are essential for the whole building Heat Air and Moisture (HAM) response. However, a simulation tool with short calculation time, property accuracy and interface is needed for practical building design processes. In this research, we consider the vapor transfer phenomenon of building materials as well as temperature and humidity and energy consumption in a building space. The simulation bases on the EMPD method, which was performed by EnergyPlus, a simulation tool developed by DOE, to simulate the indoor moisture variation in a one-zone residential unit based on the Effective Moisture Penetration Depth Method, which is more suitable for practical building design processes.

Reasoning With Non-Binary Logics

Students in high education are presented with new terms and concepts in nearly every lecture they attend. Many of them prefer Web-based self-tests for evaluation of their concepts understanding since they can use those tests independently of tutors- working hours and thus avoid the necessity of being in a particular place at a particular time. There is a large number of multiple-choice tests in almost every subject designed to contribute to higher level learning or discover misconceptions. Every single test provides immediate feedback to a student about the outcome of that test. In some cases a supporting system displays an overall score in case a test is taken several times by a student. What we still find missing is how to secure delivering of personalized feedback to a user while taking into consideration the user-s progress. The present work is motivated to throw some light on that question.

Multiresolution Approach to Subpixel Registration by Linear Approximation of PSF

Linear approximation of point spread function (PSF) is a new method for determining subpixel translations between images. The problem with the actual algorithm is the inability of determining translations larger than 1 pixel. In this paper a multiresolution technique is proposed to deal with the problem. Its performance is evaluated by comparison with two other well known registration method. In the proposed technique the images are downsampled in order to have a wider view. Progressively decreasing the downsampling rate up to the initial resolution and using linear approximation technique at each step, the algorithm is able to determine translations of several pixels in subpixel levels.

Mental Illness Stigma and Causal Beliefs: Among Potential Mental Health Professionals

Mental health professionals views about mental illness is an important issue which has not received enough attention. The negative stigma associated with mental illness can have many negative consequences. Unfortunately, health professionals working with the mentally ill can also exhibit stigma. It has been suggested that causal explanations or beliefs around the causes of mental illness may influence stigma. This study aims to gain a greater insight into stigma through examining stigma among potential mental health professionals. Firstly, results found that potential mental health professionals had relatively low social distance t(205) = -3.62, p

Characterization and Evaluation of the Activity of Dipeptidyl Peptidase IV from the Black-Bellied Hornet Vespa basalis

Characterization and evaluation of the activity of Vespa basalis DPP-IV, which expressed in Spodoptera frugiperda 21 cells. The expression of rDPP-IV was confirmed by SDS–PAGE, Western blot analyses, LC-MS/MS and measurement of its peptidase specificity. One-step purification by Ni-NTA affinity chromatography and the total amount of rDPP-IV recovered was approximately 6.4mg per liter from infected culture medium; an equivalent amount would be produced by 1x109 infected Sf21 insect cells. Through the affinity purification led to highly stable rDPP-IV enzyme was recovered and with significant peptidase activity. The rDPP-IV exhibited classical Michaelis–Menten kinetics, with kcat/Km in the range of 10-500 mM-1×S-1 for the five synthetic substrates and optimum substrate is Ala-Pro-pNA. As expected in inhibition assay, the enzymatic activity of rDPP-IV was significantly reduced by 80 or 60% in the presence of sitagliptin (a DPP-IV inhibitor) or PMSF (a serine protease inhibitor), but was not apparently affected by iodoacetamide (a cysteine protease inhibitor).

Size Dependence of 1D Superconductivity in NbN Nanowires on Suspended Carbon Nanotubes

We report the size dependence of 1D superconductivity in ultrathin (10-130 nm) nanowires produced by coating suspended carbon nanotubes with a superconducting NbN thin film. The resistance-temperature characteristic curves for samples with ≧25 nm wire width show the superconducting transition. On the other hand, for the samples with 10-nm width, the superconducting transition is not exhibited owing to the quantum size effect. The differential resistance vs. current density characteristic curves show some peak, indicating that Josephson junctions are formed in nanowires. The presence of the Josephson junctions is well explained by the measurement of the magnetic field dependence of the critical current. These understanding allow for the further expansion of the potential application of NbN, which is utilized for single photon detectors and so on.

Approximate Solutions to Large Stein Matrix Equations

In the present paper, we propose numerical methods for solving the Stein equation AXC - X - D = 0 where the matrix A is large and sparse. Such problems appear in discrete-time control problems, filtering and image restoration. We consider the case where the matrix D is of full rank and the case where D is factored as a product of two matrices. The proposed methods are Krylov subspace methods based on the block Arnoldi algorithm. We give theoretical results and we report some numerical experiments.