Modeling and Simulation of Motion of an Underwater Robot Glider for Shallow-water Ocean Applications

This paper describes the modeling and simulation of an underwater robot glider used in the shallow-water environment. We followed the Equations of motion derived by [2] and simplified dynamic Equations of motion of an underwater glider according to our underwater glider. A simulation code is built and operated in the MATLAB Simulink environment so that we can make improvements to our testing glider design. It may be also used to validate a robot glider design.

Evaluation of Some Chemical Parameters as Potential Determinants of Fresh Water Snails with Special Reference to Medically Important Snails in Egypt

Seasonal survey of freshwater snails in different water courses in Egypt during two successive years included 13 snail species. They represented by Biomphalaria alexandrina, Bulinus truncatus, Physa acuta, Helisoma duryi, Lymnaea natalensis, Planorbis pantries, Cleopatra bulimoides, Lanistes carinatus, Bellamya unicolor, Melanoides tuberculata, Theodoxus niloticus, Succinia cleopatra and Valvata nilotica. B. alexandrina was most abundant during autumn and spring represented by 26and14 snails/site, respectively. B. truncatus was most abundant during winter (7.7and3.6snails/site) of the two years, respectively. L. natalensis was represented by 7snails/site in summer. The tolerance of different snail species to the chemical elements was determined seasonally and correlated to their abundance. In spring, autumn and winter, B. alexandrina was significantly found to live under the highest level of Pb, Cd,Cu, Na, K and Ca concentrations than the other species (p

Enhancing Landfill Gas Production by Methanogenic Sand Layer

Landfill gas, particularly methane is one of the greenhouse gases which contributes to global warming. This paper presents the findings of a study on methane gas production from simulated landfill reactor under saturated conditions. A reactor was constructed to represent a landfill cell of 2.5 m thickness on sandy soil. The reactor was 0.2 m in diameter and 4 m in height. One meter of sand and pebble layer was packed at the bottom of the reactor followed by 2.5 m of solid waste layer and 0.4 m of sand layer as the cover soil. Degradation of waste in the solid waste layer was at acidification stage as indicated by the leachate quality with COD as high as 55,511 mg/L and pH as low as 5.1. However, methanogenic environment was established at the bottom sand layer after one year of operation indicated by pH of 7.2 and methane gas generation. Leachate degradation took place as the leachate moved through the sand layer at an infiltration of rate 0.7 cm/day. This resulted in landfill gas production of 77 mL/day/kg containing 55 to 65% methane. The application of sand layer contributed to the gas production from landfill by an in-situ degradation of leachate in the sand at the bottom of the landfill.

A Modified Genetic Based Technique for Solving the Power System State Estimation Problem

Power system state estimation is the process of calculating a reliable estimate of the power system state vector composed of bus voltages' angles and magnitudes from telemetered measurements on the system. This estimate of the state vector provides the description of the system necessary for the operation and security monitoring. Many methods are described in the literature for solving the state estimation problem, the most important of which are the classical weighted least squares method and the nondeterministic genetic based method; however both showed drawbacks. In this paper a modified version of the genetic algorithm power system state estimation is introduced, Sensitivity of the proposed algorithm to genetic operators is discussed, the algorithm is applied to case studies and finally it is compared with the classical weighted least squares method formulation.

Cereals' Products with Red Grape and Walnut Extracts as Functional Foods for Prevention of Kidney Dysfunction

In the present research, two nutraceuticals made from red grape and walnut that showed previously to improve kidney dysfunction were incorporated separately into functional foods' bread made from barley and rice bran. The functional foods were evaluated in rats in which chronic renal failure was induced through feeding diet rich in adenine and phosphate (APD). The evaluation based on assessing kidney function, oxidative stress, inflammatory biomarkers and body weight gain. Results showed induction of chronic kidney failure reflected in significant increase in plasma urea, creatinine, malondialdehyde, tumor necrosis factor- α and low density lipoprotein cholesterol along with significant reduction of plasma albumin, and total antioxidant and creatinine clearance and body weight gain on feeding APD compared to control healthy group. Feeding the functional foods produced amelioration in the different biochemical parameters and body weight gain indicating improvement in kidney function.

Photodegradation of Phenol Red in the Presence of ZnO Nanoparticles

In our recent study, we have used ZnO nanoparticles assisted with UV light irradiation to investigate the photocatalytic degradation of Phenol Red (PR). The ZnO photocatalyst was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), specific surface area analysis (BET) and UVvisible spectroscopy. X-ray diffractometry result for the ZnO nanoparticles exhibit normal crystalline phase features. All observed peaks can be indexed to the pure hexagonal wurtzite crystal structures, with the space group of P63mc. There are no other impurities in the diffraction peak. In addition, TEM measurement shows that most of the nanoparticles are rod-like and spherical in shape and fairly monodispersed. A significant degradation of the PR was observed when the catalyst was added into the solution even without the UV light exposure. In addition, the photodegradation increases with the photocatalyst loading. The surface area of the ZnO nanomaterials from the BET measurement was 11.9 m2/g. Besides the photocatalyst loading, the effect of some parameters on the photodegradation efficiency such as initial PR concentration and pH were also studied.

A Comparison of SVM-based Criteria in Evolutionary Method for Gene Selection and Classification of Microarray Data

An evolutionary method whose selection and recombination operations are based on generalization error-bounds of support vector machine (SVM) can select a subset of potentially informative genes for SVM classifier very efficiently [7]. In this paper, we will use the derivative of error-bound (first-order criteria) to select and recombine gene features in the evolutionary process, and compare the performance of the derivative of error-bound with the error-bound itself (zero-order) in the evolutionary process. We also investigate several error-bounds and their derivatives to compare the performance, and find the best criteria for gene selection and classification. We use 7 cancer-related human gene expression datasets to evaluate the performance of the zero-order and first-order criteria of error-bounds. Though both criteria have the same strategy in theoretically, experimental results demonstrate the best criterion for microarray gene expression data.

Image Transmission via Iterative Cellular-Turbo System

To compress, improve bit error performance and also enhance 2D images, a new scheme, called Iterative Cellular-Turbo System (IC-TS) is introduced. In IC-TS, the original image is partitioned into 2N quantization levels, where N is denoted as bit planes. Then each of the N-bit-plane is coded by Turbo encoder and transmitted over Additive White Gaussian Noise (AWGN) channel. At the receiver side, bit-planes are re-assembled taking into consideration of neighborhood relationship of pixels in 2-D images. Each of the noisy bit-plane values of the image is evaluated iteratively using IC-TS structure, which is composed of equalization block; Iterative Cellular Image Processing Algorithm (ICIPA) and Turbo decoder. In IC-TS, there is an iterative feedback link between ICIPA and Turbo decoder. ICIPA uses mean and standard deviation of estimated values of each pixel neighborhood. It has extra-ordinary satisfactory results of both Bit Error Rate (BER) and image enhancement performance for less than -1 dB Signal-to-Noise Ratio (SNR) values, compared to traditional turbo coding scheme and 2-D filtering, applied separately. Also, compression can be achieved by using IC-TS systems. In compression, less memory storage is used and data rate is increased up to N-1 times by simply choosing any number of bit slices, sacrificing resolution. Hence, it is concluded that IC-TS system will be a compromising approach in 2-D image transmission, recovery of noisy signals and image compression.

Improving the Road Construction Supply Chain by Developing a National Level Performance Measurement System: the Case of Estonia

Transport and logistics are the lifeblood of societies. There is a strong correlation between overall growth in economic activity and growth of transport. The movement of people and goods has the potential for creating wealth and prosperity, therefore the state of transportation infrastructure and especially the condition of road networks is often a governmental priority. The design, building and maintenance of national roads constitute a substantial share of government budgets. Taking into account the magnitude and importance of these investments, the expedience, efficiency and sustainability of these projects are of great public interest. This paper provides an overview of supply chain management principles applied to road construction. In addition, road construction performance measurement systems and ICT solutions are discussed. Road construction in Estonia is analyzed. The authors propose the development of a national performance measurement system for road construction.

Retaining Structural System Active Vibration Control

This study presents an active vibration control technique to reduce the earthquake responses of a retained structural system. The proposed technique is a synthesis of the adaptive input estimation method (AIEM) and linear quadratic Gaussian (LQG) controller. The AIEM can estimate an unknown system input online. The LQG controller offers optimal control forces to suppress wall-structural system vibration. The numerical results show robust performance in the active vibration control technique.

Conventional Design and Simulation of an Urban Hybrid Bus

Due to heightened concerns over environmental and economic issues the growing important of air pollution, and the importance of conserving fossil fuel resources in the world, the automotive industry is now forced to produce more fuel efficient, low emission vehicles and new drive system technologies. One of the most promising technologies to receive attention is the hybrid electric vehicle (HEV), which consists of two or more energy sources that supply energy to electric traction motors that in turn drive the wheels. This paper presents the various structures of HEV systems, the basic theoretical knowledge for describing their operation and the general behaviour of the HEV in acceleration, cruise and deceleration phases. The conventional design and sizing of a series HEV is studied. A conventional bus and its series configuration are defined and evaluated using the ADVISOR. In this section the simulation of a standard driving cycle and prediction of its fuel consumption and emissions of the HEV are discussed. Finally the bus performance is investigated to establish whether it can satisfy the performance, fuel consumption and emissions requested. The validity of the simulation has been established by the close conformity between the fuel consumption of the conventional bus reported by the manufacturer to what has achieved from the simulation.

Detection of Bias in GPS satellites- Measurements for Enhanced Measurement Integrity

In this paper, the detection of a fault in the Global Positioning System (GPS) measurement is addressed. The class of faults considered is a bias in the GPS pseudorange measurements. This bias is modeled as an unknown constant. The fault could be the result of a receiver fault or signal fault such as multipath error. A bias bank is constructed based on set of possible fault hypotheses. Initially, there is equal probability of occurrence for any of the biases in the bank. Subsequently, as the measurements are processed, the probability of occurrence for each of the biases is sequentially updated. The fault with a probability approaching unity will be declared as the current fault in the GPS measurement. The residual formed from the GPS and Inertial Measurement Unit (IMU) measurements is used to update the probability of each fault. Results will be presented to show the performance of the presented algorithm.

Integrating Context Priors into a Decision Tree Classification Scheme

Scene interpretation systems need to match (often ambiguous) low-level input data to concepts from a high-level ontology. In many domains, these decisions are uncertain and benefit greatly from proper context. This paper demonstrates the use of decision trees for estimating class probabilities for regions described by feature vectors, and shows how context can be introduced in order to improve the matching performance.

Multi-objective Optimization with Fuzzy Based Ranking for TCSC Supplementary Controller to Improve Rotor Angle and Voltage Stability

Many real-world optimization problems involve multiple conflicting objectives and the use of evolutionary algorithms to solve the problems has attracted much attention recently. This paper investigates the application of multi-objective optimization technique for the design of a Thyristor Controlled Series Compensator (TCSC)-based controller to enhance the performance of a power system. The design objective is to improve both rotor angle stability and system voltage profile. A Genetic Algorithm (GA) based solution technique is applied to generate a Pareto set of global optimal solutions to the given multi-objective optimisation problem. Further, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto solution set. Simulation results are presented to show the effectiveness and robustness of the proposed approach.

The Labeled Classification and its Application

This paper presents and evaluates a new classification method that aims to improve classifiers performances and speed up their training process. The proposed approach, called labeled classification, seeks to improve convergence of the BP (Back propagation) algorithm through the addition of an extra feature (labels) to all training examples. To classify every new example, tests will be carried out each label. The simplicity of implementation is the main advantage of this approach because no modifications are required in the training algorithms. Therefore, it can be used with others techniques of acceleration and stabilization. In this work, two models of the labeled classification are proposed: the LMLP (Labeled Multi Layered Perceptron) and the LNFC (Labeled Neuro Fuzzy Classifier). These models are tested using Iris, wine, texture and human thigh databases to evaluate their performances.

Scots Pine Needles as Bioindicators in Determining the Aerial Distribution Pattern of Sulphur Emissions around Industrial Plants

In this study, the Scots pine (Pinus sylvestris L.) C needles (i.e. the current-year-needles) were used as bioindicators in determining the aerial distribution pattern of sulphur emissions around industrial point sources at Kemi, Northern Finland. The average sulphur concentration in the C needles was 897 mg/kg (d.w.), with a standard deviation of 118 mg/kg (d.w.) and range 740 – 1350 mg/kg (d.w.). According to results in this study, Scots pine needles (Pinus sylvestris L.) appear to be an ideal bioindicators for identifying atmospheric sulphur pollution derived from industrial plants and can complement the information provided by plant mapping studies around industrial plants.

Different Multimedia Presentation Types and Students' Interpretation Achievement

The main purpose of the study was to determine whether students- interpretation achievement differed with the use of various multimedia presentation types. Four groups of students, text only (T), audio only (A), text and audio (TA), text and image (TI), were arranged and they were presented the same story via different types of multimedia presentations. Inference achievement was measured by a critical thinking inference test. Higher mean scores for the TA group compared to the other three groups were found. Also when compared pairwise, interpretation achievement of the TA group differed significantly from scores of the T and TI groups. These differences were interpreted with the increased cognitive load. Increased cognitive load for the TA group may have invited students to put more effort into comprehending the text, thus resulting in better test scores. Findings of the study can be seen as a sign of the importance of learning situations and learning outcomes in multimedia-supported learning environments and may have practical benefits for instructional designers.

Study of the Oxidation Resistance of Coated AISI 441 Ferritic Stainless Steel for SOFCs

Protective coatings that resist oxide scale growth and decrease chromium evaporation are necessary to make stainless steel interconnect materials for long-term durable operation of solid oxide fuel cells (SOFCs). In this study a layer of cobalt was electroplated on the surface of AISI 441 ferritic stainless steel which is used in solid oxide fuel cells for interconnect applications. The oxidation behavior of coated substrates was studied as a function of time at operating conditions of SOFCs. Cyclic oxidation has been also tested at 800ºC for 100 cycles. Cobalt coating during isothermal oxidation caused to the oxide growth resistance by limiting the outward diffusion of Cr cation and the inward diffusion of oxygen anion. Results of cyclic oxidation exhibited that coated substrates demonstrate an excellent resistance against the spallation and cracking.

Towards a New Era of Sustainability in the Automotive Industry: Strategic Human Resource Management and Green Technology Innovation

Although automotive industry has brought different beneficiaries to human life, it is being pointed out as one of the major cause of global air pollution which resulted in climate change, smog, green house gases (GHGs), and human diseases by many reasons. Since auto industry is one of the largest consumers of fossil fuels, the realization of green innovations is becoming a crucial choice to meet the challenges towards sustainable development. Recently, many auto manufacturers have embarked on green technology initiatives to gain a competitive advantage in the global market; however, innovative manufacturing systems and technologies can enhance operational performance only if the human resource management is in place to elicit the motivation of the employees and develop their organizational expertise. No organization can perform at peak levels unless each employee is committed to the company goals and works as an effective team member. Strategic human resource practices are the primary means by which firms can shape the skills, attitudes, and behavior of individuals to align with the business strategic objectives. This study investigates on the comprehensive approach of multiple advanced technology innovations and human resource management at Toyota Motor Corporation as the market leader of full hybrid technology in the automotive industry. Then, HRM framework of the company is described and three sets of human resource practices that support the innovation-oriented HR system, presented. Finally, a conceptual framework for innovativeness in green technology in automotive industry by applying a deliberate strategic HR management system and knowledge management with the intervening factors of organizational culture, knowledge application and knowledge sharing is proposed.

Effects of Rarefaction and Compressibility on Fluid Flow at Slip Flow Regime by Direct Simulation of Roughness

A two dimensional numerical simulation has been performed for incompressible and compressible fluid flow through microchannels in slip flow regime. The Navier-Stokes equations have been solved in conjunction with Maxwell slip conditions for modeling flow field associated with slip flow regime. The wall roughness is simulated with triangular microelements distributed on wall surfaces to study the effects of roughness on fluid flow. Various Mach and Knudsen numbers are used to investigate the effects of rarefaction as well as compressibility. It is found that rarefaction has more significant effect on flow field in microchannels with higher relative roughness. It is also found that compressibility has more significant effects on Poiseuille number when relative roughness increases. In addition, similar to incompressible models the increase in average fRe is more significant at low Knudsen number flows but the increase of Poiseuille number duo to relative roughness is sharper for compressible models. The numerical results have also validated with some available theoretical and experimental relations and good agreements have been seen.