The Impact of Parent Involvement in Preschool Disabled Children

The purpose of this study was to investigate the relationship between parent involvement and preschool disabled children’s development. Parents of 3 year old disabled children (N=440) and 5 year old disabled children (N=937) participating in the Special Needs Education Longitudinal Study were interviewed or answered the web design questionnaire about their actions in parenting their disabled children. These children’s developments were also evaluated by their teachers. Data were analyzed using Structural Equation Modeling. Results were showed by tables and figures. Based on the results, the researcher made some suggestions for future studies.

Statistical Modeling of Accelerated Pavement Failure Using Response Surface Methodology

Rutting is one of the major load-related distresses in airport flexible pavements. Rutting in paving materials develop gradually with an increasing number of load applications, usually appearing as longitudinal depressions in the wheel paths and it may be accompanied by small upheavals to the sides. Significant research has been conducted to determine the factors which affect rutting and how they can be controlled. Using the experimental design concepts, a series of tests can be conducted while varying levels of different parameters, which could be the cause for rutting in airport flexible pavements. If proper experimental design is done, the results obtained from these tests can give a better insight into the causes of rutting and the presence of interactions and synergisms among the system variables which have influence on rutting. Although traditionally, laboratory experiments are conducted in a controlled fashion to understand the statistical interaction of variables in such situations, this study is an attempt to identify the critical system variables influencing airport flexible pavement rut depth from a statistical DoE perspective using real field data from a full-scale test facility. The test results do strongly indicate that the response (rut depth) has too much noise in it and it would not allow determination of a good model. From a statistical DoE perspective, two major changes proposed for this experiment are: (1) actual replication of the tests is definitely required, (2) nuisance variables need to be identified and blocked properly. Further investigation is necessary to determine possible sources of noise in the experiment.

Finite Element Modeling and Mechanical Properties of Aluminum Proceed by Equal Channel Angular Pressing Process

During the last decade ultrafine grained (UFG) and nano-structured (NS) materials have experienced a rapid development. In this research work finite element analysis has been carried out to investigate the plastic strain distribution in equal channel angular process (ECAP). The magnitudes of Standard deviation (S. D.) and inhomogeneity index (Ci) were compared for different ECAP passes. Verification of a three-dimensional finite element model was performed with experimental tests. Finally the mechanical property including impact energy of ultrafine grained pure commercially pure Aluminum produced by severe plastic deformation method has been examined. For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 20° and 20mm had been designed and manufactured. Commercial pure Aluminum billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 67HV from 21HV after the final stage of process. Also, about 330% and 285% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by 23% and 50% after imposing four passes of ECAP process, respectively.

Performance Evaluation and Modeling of a Conical Plunging Jet Aerator

Aeration by a plunging water jet is an energetically attractive way to effect oxygen-transfer than conventional oxygenation systems. In the present study, a new type of conical shaped plunging aeration device is fabricated to generate hollow inclined ined plunging jets (jet plunge angle of π/3 ) to investigate its oxygen transfer capacity. The results suggest that the volumetric oxygen-transfer coefficient and oxygen-transfer efficiency of the conical plunging jet aerator are competitive with other types of aeration systems. Relationships of volumetric oxygen-transfer coefficient with jet power per unit volume and jet parameters are also proposed. The suggested relationships predict the volumetric oxygentransfer coefficient within a scatter of ± 15% . Further, the application of Support Vector Machines on the experimental data revealed its utility in the prediction of volumetric oxygen-transfer coefficient and development of conical plunging jet aerators.

Network of Coupled Stochastic Oscillators and One-way Quantum Computations

A network of coupled stochastic oscillators is proposed for modeling of a cluster of entangled qubits that is exploited as a computation resource in one-way quantum computation schemes. A qubit model has been designed as a stochastic oscillator formed by a pair of coupled limit cycle oscillators with chaotically modulated limit cycle radii and frequencies. The qubit simulates the behavior of electric field of polarized light beam and adequately imitates the states of two-level quantum system. A cluster of entangled qubits can be associated with a beam of polarized light, light polarization degree being directly related to cluster entanglement degree. Oscillatory network, imitating qubit cluster, is designed, and system of equations for network dynamics has been written. The constructions of one-qubit gates are suggested. Changing of cluster entanglement degree caused by measurements can be exactly calculated.

Kinetic Study of Gluconic Acid Batch Fermentation by Aspergillus niger

Gluconic acid is one of interesting chemical products in industries such as detergents, leather, photographic, textile, and especially in food and pharmaceutical industries. Fermentation is an advantageous process to produce gluconic acid. Mathematical modeling is important in the design and operation of fermentation process. In fact, kinetic data must be available for modeling. The kinetic parameters of gluconic acid production by Aspergillus niger in batch culture was studied in this research at initial substrate concentration of 150, 200 and 250 g/l. The kinetic models used were logistic equation for growth, Luedeking-Piret equation for gluconic acid formation, and Luedeking-Piret-like equation for glucose consumption. The Kinetic parameters in the model were obtained by minimizing non linear least squares curve fitting.

Reliability Modeling and Data Analysis of Vacuum Circuit Breaker Subject to Random Shocks

The electrical substation components are often subject to degradation due to over-voltage or over-current, caused by a short circuit or a lightning. A particular interest is given to the circuit breaker, regarding the importance of its function and its dangerous failure. This component degrades gradually due to the use, and it is also subject to the shock process resulted from the stress of isolating the fault when a short circuit occurs in the system. In this paper, based on failure mechanisms developments, the wear out of the circuit breaker contacts is modeled. The aim of this work is to evaluate its reliability and consequently its residual lifetime. The shock process is based on two random variables such as: the arrival of shocks and their magnitudes. The arrival of shocks was modeled using homogeneous Poisson process (HPP). By simulation, the dates of short-circuit arrivals were generated accompanied with their magnitudes. The same principle of simulation is applied to the amount of cumulative wear out contacts. The objective reached is to find the formulation of the wear function depending on the number of solicitations of the circuit breaker.

New Technologies for Modeling of Gas Turbine Cooled Blades

In contrast to existing methods which do not take into account multiconnectivity in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM and FDM) numerical methods of calculation of stationary and cvazistationary temperature field of a profile part of a blade with convective cooling (from the point of view of realization on PC). The theoretical substantiation of these methods is proved by appropriate theorems. For it, converging quadrature processes have been developed and the estimations of errors in the terms of A.Ziqmound continuity modules have been received. For visualization of profiles are used: the method of the least squares with automatic conjecture, device spline, smooth replenishment and neural nets. Boundary conditions of heat exchange are determined from the solution of the corresponding integral equations and empirical relationships. The reliability of designed methods is proved by calculation and experimental investigations heat and hydraulic characteristics of the gas turbine 1st stage nozzle blade

Numerical Modeling of Direct Shear Tests on Sandy Clay

Investigation of sandy clay behavior is important since urban development demands mean that sandy clay areas are increasingly encountered, especially for transportation infrastructures. This paper presents the results of the finite element analysis of the direct shear test (under three vertical loading 44, 96 and 192 kPa) and discusses the effects of different parameters such as cohesion, friction angle and Young's modulus on the shear strength of sandy clay. The numerical model was calibrated against the experimental results of large-scale direct shear tests. The results have shown that the shear strength was increased with increase in friction angle and cohesion. However, the shear strength was not influenced by raising the friction angle at normal stress of 44 kPa. Also, the effect of different young's modulus factors on stress-strain curve was investigated.

Autonomous Underwater Vehicle (AUV) Dynamics Modeling and Performance Evaluation

A sophisticated simulator provides a cost-effective measure to carry out preliminary mission testing and diagnostic while reducing potential failures for real life at sea trials. The presented simulation framework covers three key areas: AUV modeling, sensor modeling, and environment modeling. AUV modeling mainly covers the area of AUV dynamics. Sensor modeling deals with physics and mathematical models that govern each sensor installed onto the AUV. Environment model incorporates the hydrostatic, hydrodynamics, and ocean currents that will affect the AUV in a real-time mission. Based on this designed simulation framework, custom scenarios provided by the user can be modeled and its corresponding behaviors can be observed. This paper focuses on the accuracy of the simulated data from AUV model and environmental model derived from a developed AUV test-bed which was jointly upgraded by DSTO and the University of Adelaide. The main contribution of this paper is to experimentally verify the accuracy of the proposed simulation framework.

Information Quality Evaluation Framework: Extending ISO 25012 Data Quality Model

The world wide web coupled with the ever-increasing sophistication of online technologies and software applications puts greater emphasis on the need of even more sophisticated and consistent quality requirements modeling than traditional software applications. Web sites and Web applications (WebApps) are becoming more information driven and content-oriented raising the concern about their information quality (InQ). The consistent and consolidated modeling of InQ requirements for WebApps at different stages of the life cycle still poses a challenge. This paper proposes an approach to specify InQ requirements for WebApps by reusing and extending the ISO 25012:2008(E) data quality model. We also discuss learnability aspect of information quality for the WebApps. The proposed ISO 25012 based InQ framework is a step towards a standardized approach to evaluate WebApps InQ.

Meta-requirements that Model Change

One of the common problems encountered in software engineering is addressing and responding to the changing nature of requirements. While several approaches have been devised to address this issue, ranging from instilling resistance to changing requirements in order to mitigate impact to project schedules, to developing an agile mindset towards requirements, the approach discussed in this paper is one of conceptualizing the delta in requirement and modeling it, in order to plan a response to it. To provide some context here, change is first formally identified and categorized as either formal change or informal change. While agile methodology facilitates informal change, the approach discussed in this paper seeks to develop the idea of facilitating formal change. To collect, document meta-requirements that represent the phenomena of change would be a pro-active measure towards building a realistic cognition of the requirements entity that can further be harnessed in the software engineering process.

An Ontology for Spatial Relevant Objects in a Location-aware System: Case Study: A Tourist Guide System

Location-aware computing is a type of pervasive computing that utilizes user-s location as a dominant factor for providing urban services and application-related usages. One of the important urban services is navigation instruction for wayfinders in a city especially when the user is a tourist. The services which are presented to the tourists should provide adapted location aware instructions. In order to achieve this goal, the main challenge is to find spatial relevant objects and location-dependent information. The aim of this paper is the development of a reusable location-aware model to handle spatial relevancy parameters in urban location-aware systems. In this way we utilized ontology as an approach which could manage spatial relevancy by defining a generic model. Our contribution is the introduction of an ontological model based on the directed interval algebra principles. Indeed, it is assumed that the basic elements of our ontology are the spatial intervals for the user and his/her related contexts. The relationships between them would model the spatial relevancy parameters. The implementation language for the model is OWLs, a web ontology language. The achieved results show that our proposed location-aware model and the application adaptation strategies provide appropriate services for the user.

Land Surface Temperature and Biophysical Factors in Urban Planning

Land surface temperature (LST) is an important parameter to study in urban climate. The understanding of the influence of biophysical factors could improve the establishment of modeling urban thermal landscape. It is well established that climate hold a great influence on the urban landscape. However, it has been recognize that climate has a low priority in urban planning process, due to the complex nature of its influence. This study will focus on the relatively cloud free Landsat Thematic Mapper image of the study area, acquired on the 2nd March 2006. Correlation analyses were conducted to identify the relationship of LST to the biophysical factors; vegetation indices, impervious surface, and albedo to investigate the variation of LST. We suggest that the results can be considered by the stackholders during decision-making process to create a cooler and comfortable environment in the urban landscape for city dwellers.

Meandered Microstrip Open Circuited Stub with Bandstop Characteristic

This paper presents a microstrip meandered open circuited stub with bandstop characteristic. The proposed structure is designed on a high frequency laminate with dielectric constant of 4.0 and board thickness of 0.508 millimeters. The scattering parameters and electromagnetic field distributions at various frequencies are investigated by modeling the structure with three dimensional electromagnetic simulation tool. In order to describe the resonant and bandstop characteristic of the meandered open circuited stub, a Smith chart as well as electric field at various frequencies and phases is illustrated accordingly. The structure can be an alternative method in suppressing the harmonic response of a bandpass filter.

Flow Modeling and Runner Design Optimization in Turgo Water Turbines

The incorporation of computational fluid dynamics in the design of modern hydraulic turbines appears to be necessary in order to improve their efficiency and cost-effectiveness beyond the traditional design practices. A numerical optimization methodology is developed and applied in the present work to a Turgo water turbine. The fluid is simulated by a Lagrangian mesh-free approach that can provide detailed information on the energy transfer and enhance the understanding of the complex, unsteady flow field, at very small computing cost. The runner blades are initially shaped according to hydrodynamics theory, and parameterized using Bezier polynomials and interpolation techniques. The use of a limited number of free design variables allows for various modifications of the standard blade shape, while stochastic optimization using evolutionary algorithms is implemented to find the best blade that maximizes the attainable hydraulic efficiency of the runner. The obtained optimal runner design achieves considerably higher efficiency than the standard one, and its numerically predicted performance is comparable to a real Turgo turbine, verifying the reliability and the prospects of the new methodology.

Model Reduction of Linear Systems by Conventional and Evolutionary Techniques

Reduction of Single Input Single Output (SISO) continuous systems into Reduced Order Model (ROM), using a conventional and an evolutionary technique is presented in this paper. In the conventional technique, the mixed advantages of Mihailov stability criterion and continued fraction expansions (CFE) technique is employed where the reduced denominator polynomial is derived using Mihailov stability criterion and the numerator is obtained by matching the quotients of the Cauer second form of Continued fraction expansions. In the evolutionary technique method Particle Swarm Optimization (PSO) is employed to reduce the higher order model. PSO method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. Both the methods are illustrated through numerical example.

An Economic Evaluation of Subjective Well-Being Derived from Sport Participation

This study links up the theories of social psychology, economics and sport management to assess the impact of sport participation on subjective well-being (SWB) and use a simple statistic method to estimate the relative monetary value that sport participation derives SWB for Taiwan-s college students. By constructing proper measurements on sport participation and SWB respectively, a structural equation model (SEM) is developed to perform a confirmatory factory analysis, and the causal relationship between sport participation and SWB as well as the effect of the demographic variables on these two concepts are also discussed.

Fuzzy Logic Based Determination of Battery Charging Efficiency Applied to Hybrid Power System

Battery storage system is emerging as an essential component of hybrid power system based on renewable energy resources such as solar and wind in order to make these sources dispatchable. Accurate modeling of battery storage system is ssential in order to ensure optimal planning of hybrid power systems incorporating battery storage. Majority of the system planning studies involving battery storage assume battery charging efficiency to be constant. However a strong correlation exists between battery charging efficiency and battery state of charge. In this work a Fuzzy logic based model has been presented for determining battery charging efficiency relative to a particular SOC. In order to demonstrate the efficacy of proposed approach, reliability evaluation studies are carried out for a hypothetical autonomous hybrid power system located in Jaisalmer, Rajasthan, India. The impact of considering battery charging efficiency as a function of state of charge is compared against the assumption of fixed battery charging efficiency for three different configurations comprising of wind-storage, solar-storage and wind-solar-storage.

Airfoils Aerodynamic Efficiency Study in Heavy Rain via Two Phase Flow Approach

Heavy rainfall greatly affects the aerodynamic performance of the aircraft. There are many accidents of aircraft caused by aerodynamic efficiency degradation by heavy rain. In this Paper we have studied the heavy rain effects on the aerodynamic efficiency of NACA 64-210 & NACA 0012 airfoils. For our analysis, CFD method and preprocessing grid generator are used as our main analytical tools, and the simulation of rain is accomplished via two phase flow approach-s Discrete Phase Model (DPM). Raindrops are assumed to be non-interacting, non-deforming, non-evaporating and non-spinning spheres. Both airfoil sections exhibited significant reduction in lift and increase in drag for a given lift condition in simulated rain. The most significant difference between these two airfoils was the sensitivity of the NACA 64-210 to liquid water content (LWC), while NACA 0012 performance losses in the rain environment is not a function of LWC . It is expected that the quantitative information gained in this paper will be useful to the operational airline industry and greater effort such as small scale and full scale flight tests should put in this direction to further improve aviation safety.