The Study of Increasing Environmental Temperature on the Dynamical Behaviour of a Prey-Predator System: A Model

It is well recognized that the green house gases such as Chlorofluoro Carbon (CFC), CH4, CO2 etc. are responsible directly or indirectly for the increase in the average global temperature of the Earth. The presence of CFC is responsible for the depletion of ozone concentration in the atmosphere due to which the heat accompanied with the sun rays are less absorbed causing increase in the atmospheric temperature of the Earth. The gases like CH4 and CO2 are also responsible for the increase in the atmospheric temperature. The increase in the temperature level directly or indirectly affects the dynamics of interacting species systems. Therefore, in this paper a mathematical model is proposed and analysed using stability theory to asses the effects of increasing temperature due to greenhouse gases on the survival or extinction of populations in a prey-predator system. A threshold value in terms of a stress parameter is obtained which determines the extinction or existence of populations in the underlying system.

An Agent-Based Approach to Immune Modelling: Priming Individual Response

This study focuses on examining why the range of experience with respect to HIV infection is so diverse, especially in regard to the latency period. An agent-based approach in modelling the infection is used to extract high-level behaviour which cannot be obtained analytically from the set of interaction rules at the cellular level. A prototype model encompasses local variation in baseline properties, contributing to the individual disease experience, and is included in a network which mimics the chain of lymph nodes. The model also accounts for stochastic events such as viral mutations. The size and complexity of the model require major computational effort and parallelisation methods are used.

Identification of Aircraft Gas Turbine Engines Temperature Condition

Groundlessness of application probability-statistic methods are especially shown at an early stage of the aviation GTE technical condition diagnosing, when the volume of the information has property of the fuzzy, limitations, uncertainty and efficiency of application of new technology Soft computing at these diagnosing stages by using the fuzzy logic and neural networks methods. It is made training with high accuracy of multiple linear and nonlinear models (the regression equations) received on the statistical fuzzy data basis. At the information sufficiency it is offered to use recurrent algorithm of aviation GTE technical condition identification on measurements of input and output parameters of the multiple linear and nonlinear generalized models at presence of noise measured (the new recursive least squares method (LSM)). As application of the given technique the estimation of the new operating aviation engine D30KU-154 technical condition at height H=10600 m was made.

A Methodology for Data Migration between Different Database Management Systems

In present days the area of data migration is very topical. Current tools for data migration in the area of relational database have several disadvantages that are presented in this paper. We propose a methodology for data migration of the database tables and their data between various types of relational database systems (RDBMS). The proposed methodology contains an expert system. The expert system contains a knowledge base that is composed of IFTHEN rules and based on the input data suggests appropriate data types of columns of database tables. The proposed tool, which contains an expert system, also includes the possibility of optimizing the data types in the target RDBMS database tables based on processed data of the source RDBMS database tables. The proposed expert system is shown on data migration of selected database of the source RDBMS to the target RDBMS.

Unsupervised Image Segmentation Based on Fuzzy Connectedness with Sale Space Theory

In this paper, we propose an approach of unsupervised segmentation with fuzzy connectedness. Valid seeds are first specified by an unsupervised method based on scale space theory. A region is then extracted for each seed with a relative object extraction method of fuzzy connectedness. Afterwards, regions are merged according to the values between them of an introduced measure. Some theorems and propositions are also provided to show the reasonableness of the measure for doing mergence. Experiment results on a synthetic image, a color image and a large amount of MR images of our method are reported.

Software Maintenance Severity Prediction with Soft Computing Approach

As the majority of faults are found in a few of its modules so there is a need to investigate the modules that are affected severely as compared to other modules and proper maintenance need to be done on time especially for the critical applications. In this paper, we have explored the different predictor models to NASA-s public domain defect dataset coded in Perl programming language. Different machine learning algorithms belonging to the different learner categories of the WEKA project including Mamdani Based Fuzzy Inference System and Neuro-fuzzy based system have been evaluated for the modeling of maintenance severity or impact of fault severity. The results are recorded in terms of Accuracy, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The results show that Neuro-fuzzy based model provides relatively better prediction accuracy as compared to other models and hence, can be used for the maintenance severity prediction of the software.

Investigation of Anti-Inflammatory, Antipyretic and Analgesic Effect of Yemeni Sidr Honey

Traditionally, Yemini Sidr honey has been reported to cure liver problems, stomach ulcers, and respiratory disorders. In this experiment, we evaluated Yemeni Sidr honey for its ability to protect inflammations caused by acetic acid and formalin -induced writhing, carrageenan and histamine-induced paw oedema in experimental rat model. Hyperpyrexia, membrane stabilizing activity, and phytochemical screening of the honey was also examined. Yemini Sidr Honey at (100, 200 and 500 mg/kg) exhibited a concentration dependant inhibition of acetic acid induced and formalin induced writhing, paw oedema induced by carrageenan & histamine, and hyperpyrexia induced by brewer's yeast, it also inhibited membrane stabilizing activity. Phytochemical screenings of the honey reveal the presence of flavonoids, steroid, alkaloids, saponins and tannins. This study suggested that Yemeni Sidr honey possess very strong antiinflammatory, analgesic and antipyretic effects and these effects would be a result of the phytochemicals present.

Subthreshold Circuit Performance Investigation under Temperature Variations

Ultra-low-power (ULP) circuits have received widespread attention due to the rapid growth of biomedical applications and Battery-less Electronics. Subthreshold region of transistor operation is used in ULP circuits. Major research challenge in the subthreshold operating region is to extract the ULP benefits with minimal degradation in speed and robustness. Process, Voltage and Temperature (PVT) variations significantly affect the performance of subthreshold circuits. Designed performance parameters of ULP circuits may vary largely due to temperature variations. Hence, this paper investigates the effect of temperature variation on device and circuit performance parameters at different biasing voltages in the subthreshold region. Simulation results clearly demonstrate that in deep subthreshold and near threshold voltage regions, performance parameters are significantly affected whereas in moderate subthreshold region, subthreshold circuits are more immune to temperature variations. This establishes that moderate subthreshold region is ideal for temperature immune circuits.

PET/CT Patient Dosage Assay

A Positron Emission Tomography (PET) is a radioisotope imaging technique that illustrates the organs and the metabolisms of the human body. This technique is based on the simultaneous detection of 511 keV annihilation photons, annihilated as a result of electrons annihilating positrons that radiate from positron-emitting radioisotopes that enter biological active molecules in the body. This study was conducted on ten patients in an effort to conduct patient-related experimental studies. Dosage monitoring for the bladder, which was the organ that received the highest dose during PET applications, was conducted for 24 hours. Assessment based on measuring urination activities after injecting patients was also a part of this study. The MIRD method was used to conduct dosage calculations for results obtained from experimental studies. Results obtained experimentally and theoretically were assessed comparatively.

Development of Better Quality Low-Cost Activated Carbon from South African Pine Tree (Pinus patula) Sawdust: Characterization and Comparative Phenol Adsorption

The remediation of water resources pollution in developing countries requires the application of alternative sustainable cheaper and efficient end-of-pipe wastewater treatment technologies. The feasibility of use of South African cheap and abundant pine tree (Pinus patula) sawdust for development of lowcost AC of comparable quality to expensive commercial ACs in the abatement of water pollution was investigated. AC was developed at optimized two-stage N2-superheated steam activation conditions in a fixed bed reactor, and characterized for proximate and ultimate properties, N2-BET surface area, pore size distribution, SEM, pHPZC and FTIR. The sawdust pyrolysis activation energy was evaluated by TGA. Results indicated that the chars prepared at 800oC and 2hrs were suitable for development of better quality AC at 800oC and 47% burn-off having BET surface area (1086m2/g), micropore volume (0.26cm3/g), and mesopore volume (0.43cm3/g) comparable to expensive commercial ACs, and suitable for water contaminants removal. The developed AC showed basic surface functionality at pHPZC at 10.3, and a phenol adsorption capacity that was higher than that of commercial Norit (RO 0.8) AC. Thus, it is feasible to develop better quality low-cost AC from (Pinus patula) sawdust using twostage N2-steam activation in fixed-bed reactor.

Academic Digital Library's Evaluation Criteria: User-Centered Approach

Academic digital libraries emerged as a result of advances in computing and information systems technologies, and had been introduced in universities and to public. As results, moving in parallel with current technology in learning and researching environment indeed offers myriad of advantages especially to students and academicians, as well as researchers. This is due to dramatic changes in learning environment through the use of digital library system which giving spectacular impact on these societies- way of performing their study/research. This paper presents a survey of current criteria for evaluating academic digital libraries- performance. The goal is to discuss criteria being applied so far for academic digital libraries evaluation in the context of user-centered design. Although this paper does not comprehensively take into account all previous researches in evaluating academic digital libraries but at least it can be a guide in understanding the evaluation criteria being widely applied.

Parental Attitudes as a Predictor of Cyber Bullying among Primary School Children

Problem Statement:Rapid technological developments of the 21st century have advanced our daily lives in various ways. Particularly in education, students frequently utilize technological resources to aid their homework and to access information. listen to radio or watch television (26.9 %) and e-mails (34.2 %) [26]. Not surprisingly, the increase in the use of technologies also resulted in an increase in the use of e-mail, instant messaging, chat rooms, mobile phones, mobile phone cameras and web sites by adolescents to bully peers. As cyber bullying occurs in the cyber space, lesser access to technologies would mean lesser cyber-harm. Therefore, the frequency of technology use is a significant predictor of cyber bullying and cyber victims. Cyber bullies try to harm the victim using various media. These tools include sending derogatory texts via mobile phones, sending threatening e-mails and forwarding confidential emails to everyone on the contacts list. Another way of cyber bullying is to set up a humiliating website and invite others to post comments. In other words, cyber bullies use e-mail, chat rooms, instant messaging, pagers, mobile texts and online voting tools to humiliate and frighten others and to create a sense of helplessness. No matter what type of bullying it is, it negatively affects its victims. Children who bully exhibit more emotional inhibition and attribute themselves more negative self-statements compared to non-bullies. Students whose families are not sympathetic and who receive lower emotional support are more prone to bully their peers. Bullies have authoritarian families and do not get along well with them. The family is the place where the children-s physical, social and psychological needs are satisfied and where their personalities develop. As the use of the internet became prevalent so did parents- restrictions on their children-s internet use. However, parents are unaware of the real harm. Studies that explain the relationship between parental attitudes and cyber bullying are scarce in literature. Thus, this study aims to investigate the relationship between cyber bullying and parental attitudes in the primary school. Purpose of Study: This study aimed to investigate the relationship between cyber bullying and parental attitudes. A second aim was to determine whether parental attitudes could predict cyber bullying and if so which variables could predict it significantly. Methods:The study had a cross-sectional and relational survey model. A demographics information form, questions about cyber bullying and a Parental Attitudes Inventory were conducted with a total of 346 students (189 females and 157 males) registered at various primary schools. Data was analysed by multiple regression analysis using the software package SPSS 16.

Modeling and Analysis of SVPWM Based Dynamic Voltage Restorer

In this paper the modeling and analysis of Space Vector Pulse Width Modulation (SVPWM) based Dynamic Voltage Restorer (DVR) using PSCAD/EMTDC software will be presented in details. The simulation includes full modeling of the SVPWM technique used to control the DVR inverter. A test power system composed of three phase voltage source, sag generator, DVR and three phase resistive load is used to demonstrate restoration capability of the DVR. The simulation results of the presented DVR proved excellent voltage sag mitigation to protect sensitive loads.

XML Schema Automatic Matching Solution

Schema matching plays a key role in many different applications, such as schema integration, data integration, data warehousing, data transformation, E-commerce, peer-to-peer data management, ontology matching and integration, semantic Web, semantic query processing, etc. Manual matching is expensive and error-prone, so it is therefore important to develop techniques to automate the schema matching process. In this paper, we present a solution for XML schema automated matching problem which produces semantic mappings between corresponding schema elements of given source and target schemas. This solution contributed in solving more comprehensively and efficiently XML schema automated matching problem. Our solution based on combining linguistic similarity, data type compatibility and structural similarity of XML schema elements. After describing our solution, we present experimental results that demonstrate the effectiveness of this approach.

Wavelet Entropy Based Algorithm for Fault Detection and Classification in FACTS Compensated Transmission Line

Distance protection of transmission lines including advanced flexible AC transmission system (FACTS) devices has been a very challenging task. FACTS devices of interest in this paper are static synchronous series compensators (SSSC) and unified power flow controller (UPFC). In this paper, a new algorithm is proposed to detect and classify the fault and identify the fault position in a transmission line with respect to a FACTS device placed in the midpoint of the transmission line. Discrete wavelet transformation and wavelet entropy calculations are used to analyze during fault current and voltage signals of the compensated transmission line. The proposed algorithm is very simple and accurate in fault detection and classification. A variety of fault cases and simulation results are introduced to show the effectiveness of such algorithm.

Evolving a Fuzzy Rule-Base for Image Segmentation

A new method for color image segmentation using fuzzy logic is proposed in this paper. Our aim here is to automatically produce a fuzzy system for color classification and image segmentation with least number of rules and minimum error rate. Particle swarm optimization is a sub class of evolutionary algorithms that has been inspired from social behavior of fishes, bees, birds, etc, that live together in colonies. We use comprehensive learning particle swarm optimization (CLPSO) technique to find optimal fuzzy rules and membership functions because it discourages premature convergence. Here each particle of the swarm codes a set of fuzzy rules. During evolution, a population member tries to maximize a fitness criterion which is here high classification rate and small number of rules. Finally, particle with the highest fitness value is selected as the best set of fuzzy rules for image segmentation. Our results, using this method for soccer field image segmentation in Robocop contests shows 89% performance. Less computational load is needed when using this method compared with other methods like ANFIS, because it generates a smaller number of fuzzy rules. Large train dataset and its variety, makes the proposed method invariant to illumination noise

Edge-end Pixel Extraction for Edge-based Image Segmentation

Extraction of edge-end-pixels is an important step for the edge linking process to achieve edge-based image segmentation. This paper presents an algorithm to extract edge-end pixels together with their directional sensitivities as an augmentation to the currently available mathematical models. The algorithm is implemented in the Java environment because of its inherent compatibility with web interfaces since its main use is envisaged to be for remote image analysis on a virtual instrumentation platform.

Fast Object/Face Detection Using Neural Networks and Fast Fourier Transform

Recently, fast neural networks for object/face detection were presented in [1-3]. The speed up factor of these networks relies on performing cross correlation in the frequency domain between the input image and the weights of the hidden layer. But, these equations given in [1-3] for conventional and fast neural networks are not valid for many reasons presented here. In this paper, correct equations for cross correlation in the spatial and frequency domains are presented. Furthermore, correct formulas for the number of computation steps required by conventional and fast neural networks given in [1-3] are introduced. A new formula for the speed up ratio is established. Also, corrections for the equations of fast multi scale object/face detection are given. Moreover, commutative cross correlation is achieved. Simulation results show that sub-image detection based on cross correlation in the frequency domain is faster than classical neural networks.

Utilizing Virtual Worlds in Education: The Implications for Practice

Multi User Virtual Worlds are becoming a valuable educational tool. Learning experiences within these worlds focus on discovery and active experiences that both engage students and motivate them to explore new concepts. As educators, we need to explore these environments to determine how they can most effectively be used in our instructional practices. This paper explores the current application of virtual worlds to identify meaningful educational strategies that are being used to engage students and enhance teaching and learning.

Video Quality assessment Measure with a Neural Network

In this paper, we present the video quality measure estimation via a neural network. This latter predicts MOS (mean opinion score) by providing height parameters extracted from original and coded videos. The eight parameters that are used are: the average of DFT differences, the standard deviation of DFT differences, the average of DCT differences, the standard deviation of DCT differences, the variance of energy of color, the luminance Y, the chrominance U and the chrominance V. We chose Euclidean Distance to make comparison between the calculated and estimated output.