An Agent-Based Approach to Immune Modelling: Priming Individual Response

This study focuses on examining why the range of experience with respect to HIV infection is so diverse, especially in regard to the latency period. An agent-based approach in modelling the infection is used to extract high-level behaviour which cannot be obtained analytically from the set of interaction rules at the cellular level. A prototype model encompasses local variation in baseline properties, contributing to the individual disease experience, and is included in a network which mimics the chain of lymph nodes. The model also accounts for stochastic events such as viral mutations. The size and complexity of the model require major computational effort and parallelisation methods are used.




References:
[1] J. Burns. Emergent networks in immune system shape space. PhD thesis,
Dublin City University, School of Computing, 2005.
[2] R.N. Germain. The art of the probable: System control in the adaptive
immune system. Science, 293(5528):240-245, 2001.
[3] J.C. Lemahieu. Le systeme immunitaire. Immunology courses
(http://anne.decoster.free.fr/immuno/orgcelri/orgcelmo.htm), accessed
12/2005.
[4] D. Klatzmann, E. Champagne, S. Chamaret, J. Gruest, D. Guetard, T.
Hercend, J.C. Gluckman, and L. Montagnier. T-lymphocyte T4 molecule
behaves as the receptor for human retrovirus LAV. Nature,
312(5996):767-768, 1984.
[5] A. Decoster and J.C. Lemahieu. Les retrovirus. Virology courses
(http://anne.decoster.free.fr/d1viro/vretrov0.html), accessed 12/2005.
[6] G. Solovey, F. Peruani, S. Ponce-Dawson, and R.M. Zorzenon dos
Santos. On cell resistance and immune response time lag in a model for
the HIV infection. Physica A, 343(2004):543-556, 2004.
[7] A. Benyoussef, N. El HafidAllah, A. ElKenz, H. Ez-Zahraouy, and M.
Loulidi. Dynamics of HIV infection on 2D cellular automata. Physica A,
322(2003):506-520, 2003.
[8] U. Hershberg, Y. Louzoun, H. Atlan, and S. Solomon. HIV time
hierarchy: winning the war while, loosing all the battles. Physica A,
289(2001):178-190, 2001.
[9] A. Mielke and R.B. Pandey. A computer simulation study of cell
population in a fuzzy interaction model for mutating HIV. Physica A,
251(1998):430-438, 1998.
[10] R. Mannion, H.J. Ruskin, and R.B. Pandey. A Monte-Carlo approach to
population dynamics of cells in a HIV immune response model. Theory
in Biosciences, 121(2002):237-245, 2002.
[11] M. Wooldridge and N. Jennings. Intelligent agents : Theory and practice.
The Knowledge Engineering Review, 2(10):115-152, 1995.
[12] E.H. Durfee. Scaling up agent coordination strategies. Computer,
34(7):39-46, 2001.
[13] S. Cammarata, D. McArthur, and R. Steeb. Strategies of cooperation in
distributed problem solving. In Proceedings of the Eighth International
Joint Conference on Artificial Intelligence (IJCAI-83), Karlsruhe,
Germany, 1983.
[14] E.H. Durfee. Coordination of distributed problem solvers. Kluwer
Academic Publishers, 1998.
[15] B. Hayes-Roth, M. Hewett, R. Washington, R. Hewett, and A. Seiver.
Distributing intelligence within an individual. In L. Gasser and M.
Huhns, editors, Distributed Artificial Intelligence Volume II, pages 385-
412. Pitman Publishing and Morgan Kaufmann, 1989.
[16] R.D. Groot. Consumers don-t play dice, influence of social networks and
advertisements. Physica A, 363(2006):446-458, 2006.
[17] M. Pogson, R. Smallwood, E. Qwarnstrom, and M. Holcombea. Formal
agent-based modelling of intracellular chemical interactions.
BioSystems, 85(2006):37-45, 2006.
[18] S.M. Manson. Agent-based modeling and genetic programming for
modeling land change in the Southern Yucatan peninsular region of
Mexico. Agriculture, Ecosystems and Environment, 111(2005):47-62,
2005.
[19] N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The Swarm
simulation system: A toolkit for building multi-agent simulations.
Working Paper 96-06-042, Santa Fe Institute, 1996.
[20] F. Bellifemine, A. Poggi, G. Rimassa, and P. Turci. An object oriented
framework to realize agent systems. In Proceedings of WOA 2000
Workshop, Parma, Italy, May 2000.
[21] K. Kleinmann, R. Lazarus, and R. Tomlinson. An infrastructure for
adaptive control of multi-agent systems. IEEE KIMAS-03 Conference
Paper, 2003.
[22] J. Kari. Theory of cellular automata: A survey. Theoretical Computer
Science, 334(2005):3-35, 2005.
[23] W.H. Press, W.T. Vetterling, S.A. Teukolsky, and B.P. Flannery.
Numerical Recipes in C++: the art of scientific computing. Cambridge
University Press, 2002.
[24] A. Srinivasan, M. Mascagni, and D. Ceperley. Testing parallel random
number generators. Parallel Computing, 29(2003):69-94, 2003.
[25] D. Hecquet, H.J. Ruskin, and M. Crane. Optimisation and parallelisation
strategies for Monte Carlo simulation of HIV infection. To appear in
Computers in Biology and Medicine, 2006.
[26] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel
Programming With the Message-Passing Interface, second edition. MIT
Press, 1999.
[27] W. Gropp, E. Lusk, and A. Skjellum. Using MPI-2: Advanced Features
of the Message Passing Interface. MIT Press, 1999.
[28] D. Perrin, H.J. Ruskin, and M. Crane. HIV modelling: Parallel
implementation strategies. accepted for presentation at the Third
International Conference on Cluster and Grid Computing Systems
(CGCS 2006), 2006.
[29] F. Buseyne and Y. Riviere. The flexibility of the TCR allows recognition
of a large set of naturally occurring epitope variants by HIV-specific
cytotoxic T lymphocytes. International Immunology, 13(7):941-950,
2001.
[30] K. Murali-Krishna, L.L. Lau, S. Sambhara, F. Lemonnier, J. Altman, and
R. Ahmed. Persistence of memory CD8 T cells in MHC Class I-deficient
mice. Science, 286(5443):1377-1381, 1999.
[31] A. Oxenius, D. Price, S.J. Dawson, T. Tun, P.J. Easterbrook, R.E.
Phillips, and A.K. Sewell. Cross-staining of cytotoxic T lymphocyte
populations with peptide-MHC class I multimers of natural HIV-1
variant antigens. AIDS, 15(1):121-122, 2001.