Nutritional Composition of Iranian Desi and Kabuli Chickpea (Cicer Arietinum L.) Cultivars in Autumn Sowing

The grain quality of chickpea in Iran is low and instable, which may be attributed to the evolution of cultivars with a narrow genetic base making them vulnerable to biotic stresses. Four chickpea varieties from diverse geographic origins were chosen and arranged in a randomized complete block design. Mesorhizobium sp. cicer strain SW7 was added to all the chickpea seeds. Chickpea seeds were planted on October 9, 2013. Each genotype was sown 5 m in length, with 35 cm inter-row spacing, in 3 rows. Weeds were removed manually in all plots. Results showed that Analysis of variance on the studied traits showed significant differences among genotypes for N, P, K and Fe contents of chickpea, but there is not a significant difference among Ca, Zn and Mg continents of chickpea. The experimental coefficient of variation (CV) varied from 7.3 to 15.8. In general, the CV value lower than 20% is considered to be good, indicating the accuracy of conducted experiments. The highest grain N was observed in Hashem and Jam cultivars. The highest grain P was observed in Jam cultivar. Phosphorus content (mg/100g) ranged from 142.3 to 302.3 with a mean value of 221.3. The negative correlation (-0.126) was observed between the N and P of chickpea cultivars. The highest K and Fe contents were observed in Jam cultivar.

Application of Single Subject Experimental Designs in Adapted Physical Activity Research: A Descriptive Analysis

The purpose of this study was to develop a descriptive profile of the adapted physical activity research using single subject experimental designs. All research articles using single subject experimental designs published in the journal of Adapted Physical Activity Quarterly from 1984 to 2013 were employed as the data source. Each of the articles was coded in a subcategory of seven categories: (a) the size of sample; (b) the age of participants; (c) the type of disabilities; (d) the type of data analysis; (e) the type of designs, (f) the independent variable, and (g) the dependent variable. Frequencies, percentages, and trend inspection were used to analyze the data and develop a profile. The profile developed characterizes a small portion of research articles used single subject designs, in which most researchers used a small sample size, recruited children as subjects, emphasized learning and behavior impairments, selected visual inspection with descriptive statistics, preferred a multiple baseline design, focused on effects of therapy, inclusion, and strategy, and measured desired behaviors more often, with a decreasing trend over years.

The Effects of a Thin Liquid Layer on the Hydrodynamic Machine Rotor

A mathematical model of the additional effects of the liquid in the hydrodynamic gap is presented in the paper. An incompressible viscous fluid is considered. Based on computational modeling are determined the matrices of mass, stiffness and damping. The mathematical model is experimentally verified.

Metabolites of Polygonum L. Plants Having Antitumor Properties

The article represents the results of research of antitumor activity of different structural types of plant flavonoids extracted by authors from Polygonum L. plants in commercial reserves at the territory of the Republic of Kazakhstan. For the first time ever the results comparative research of antitumor activity of plant flavonoids of different structural groups and their synthetic derivatives have been represented. The results of determination of toxicity of flavonoids in single parenteral infusion conditions have been represented. Experimental substantiation of possible mechanisms of antiproliferative and cytotoxic action of flavonoids has been suggested. The perspectives of usage of plant flavonoids as medications and creation of effective dosage forms of antitumor medicines on their basis have been substantiated.

Object Motion Tracking Based On Color Detection for Android Devices

This paper presents the development of a robot car that can track the motion of an object by detecting its color through an Android device. The employed computer vision algorithm uses the OpenCV library, which is embedded into an Android application of a smartphone, for manipulating the captured image of the object. The captured image of the object is subjected to color conversion and is transformed to a binary image for further processing after color filtering. The desired object is clearly determined after removing pixel noise by applying image morphology operations and contour definition. Finally, the area and the center of the object are determined so that object’s motion to be tracked. The smartphone application has been placed on a robot car and transmits by Bluetooth to an Arduino assembly the motion directives so that to follow objects of a specified color. The experimental evaluation of the proposed algorithm shows reliable color detection and smooth tracking characteristics.

Data Hiding by Vector Quantization in Color Image

With the growing of computer and network, digital data can be spread to anywhere in the world quickly. In addition, digital data can also be copied or tampered easily so that the security issue becomes an important topic in the protection of digital data. Digital watermark is a method to protect the ownership of digital data. Embedding the watermark will influence the quality certainly. In this paper, Vector Quantization (VQ) is used to embed the watermark into the image to fulfill the goal of data hiding. This kind of watermarking is invisible which means that the users will not conscious the existing of embedded watermark even though the embedded image has tiny difference compared to the original image. Meanwhile, VQ needs a lot of computation burden so that we adopt a fast VQ encoding scheme by partial distortion searching (PDS) and mean approximation scheme to speed up the data hiding process. The watermarks we hide to the image could be gray, bi-level and color images. Texts are also can be regarded as watermark to embed. In order to test the robustness of the system, we adopt Photoshop to fulfill sharpen, cropping and altering to check if the extracted watermark is still recognizable. Experimental results demonstrate that the proposed system can resist the above three kinds of tampering in general cases.

OPEN_EmoRec_II- A Multimodal Corpus of Human-Computer Interaction

OPEN_EmoRec_II is an open multimodal corpus with experimentally induced emotions. In the first half of the experiment, emotions were induced with standardized picture material and in the second half during a human-computer interaction (HCI), realized with a wizard-of-oz design. The induced emotions are based on the dimensional theory of emotions (valence, arousal and dominance). These emotional sequences - recorded with multimodal data (facial reactions, speech, audio and physiological reactions) during a naturalistic-like HCI-environment one can improve classification methods on a multimodal level. This database is the result of an HCI-experiment, for which 30 subjects in total agreed to a publication of their data including the video material for research purposes*. The now available open corpus contains sensory signal of: video, audio, physiology (SCL, respiration, BVP, EMG Corrugator supercilii, EMG Zygomaticus Major) and facial reactions annotations.

OPEN_EmoRec_II- A Multimodal Corpus of Human-Computer Interaction

OPEN_EmoRec_II is an open multimodal corpus with experimentally induced emotions. In the first half of the experiment, emotions were induced with standardized picture material and in the second half during a human-computer interaction (HCI), realized with a wizard-of-oz design. The induced emotions are based on the dimensional theory of emotions (valence, arousal and dominance). These emotional sequences - recorded with multimodal data (facial reactions, speech, audio and physiological reactions) during a naturalistic-like HCI-environment one can improve classification methods on a multimodal level. This database is the result of an HCI-experiment, for which 30 subjects in total agreed to a publication of their data including the video material for research purposes*. The now available open corpus contains sensory signal of: video, audio, physiology (SCL, respiration, BVP, EMG Corrugator supercilii, EMG Zygomaticus Major) and facial reactions annotations.

Nonlinear Modeling of the PEMFC Based On NNARX Approach

Polymer Electrolyte Membrane Fuel Cell (PEMFC) is such a time-vary nonlinear dynamic system. The traditional linear modeling approach is hard to estimate structure correctly of PEMFC system. From this reason, this paper presents a nonlinear modeling of the PEMFC using Neural Network Auto-regressive model with eXogenous inputs (NNARX) approach. The multilayer perception (MLP) network is applied to evaluate the structure of the NNARX model of PEMFC. The validity and accuracy of NNARX model are tested by one step ahead relating output voltage to input current from measured experimental of PEMFC. The results show that the obtained nonlinear NNARX model can efficiently approximate the dynamic mode of the PEMFC and model output and system measured output consistently.

Flexural Performance of the Sandwich Structures Having Aluminum Foam Core with Different Thicknesses

The structures obtained with the use of sandwich technologies combine low weight with high energy absorbing capacity and load carrying capacity. Hence, there is a growing and markedly interest in the use of sandwiches with aluminum foam core because of very good properties such as flexural rigidity and energy absorption capability. In the current investigation, the static threepoint bending tests were carried out on the sandwiches with aluminum foam core and glass fiber reinforced polymer (GFRP) skins at different values of support span distances aiming the analyses of their flexural performance. The influence of the core thickness and the GFRP skin type was reported in terms of peak load and energy absorption capacity. For this purpose, the skins with two different types of fabrics which have same thickness value and the aluminum foam core with two different thicknesses were bonded with a commercial polyurethane based flexible adhesive in order to combine the composite sandwich panels. The main results of the bending tests are: force-displacement curves, peak force values, absorbed energy, collapse mechanisms and the effect of the support span length and core thickness. The results of the experimental study showed that the sandwich with the skins made of S-Glass Woven fabrics and with the thicker foam core presented higher mechanical values such as load carrying and energy absorption capacities. The increment of the support span distance generated the decrease of the mechanical values for each type of panels, as expected, because of the inverse proportion between the force and span length. The most common failure types of the sandwiches are debonding of the lower skin and the core shear. The obtained results have particular importance for applications that require lightweight structures with a high capacity of energy dissipation, such as the transport industry (automotive, aerospace, shipbuilding and marine industry), where the problems of collision and crash have increased in the last years.

Calibration of the Discrete Element Method Using a Large Shear Box

One of the main challenges in using the Discrete Element Method (DEM) is to specify the correct input parameter values. In general, the models are sensitive to the input parameter values and accurate results can only be achieved if the correct values are specified. For the linear contact model, micro-parameters such as the particle density, stiffness, coefficient of friction, as well as the particle size and shape distributions are required. There is a need for a procedure to accurately calibrate these parameters before any attempt can be made to accurately model a complete bulk materials handling system. Since DEM is often used to model applications in the mining and quarrying industries, a calibration procedure was developed for materials that consist of relatively large (up to 40 mm in size) particles. A coarse crushed aggregate was used as the test material. Using a specially designed large shear box with a diameter of 590 mm, the confined Young’s modulus (bulk stiffness) and internal friction angle of the material were measured by means of the confined compression test and the direct shear test respectively. DEM models of the experimental setup were developed and the input parameter values were varied iteratively until a close correlation between the experimental and numerical results was achieved. The calibration process was validated by modelling the pull-out of an anchor from a bed of material. The model results compared well with experimental measurement.

Triadic Relationship of Icon Design for Semi-Literate Communities

Icons, or pictorial and graphical objects, are commonly used in human-computer interaction (HCI) fields as the mediator in order to communicate information to users. Yet there has been little studies focusing on a majority of the world’s population – semi-literate communities – in terms of the fundamental knowhow for designing icons for such population. In this study, two sets of icons belonging in different icon taxonomy – abstract and concrete – are designed for a mobile application for semi-literate agricultural communities. In this paper, we propose a triadic relationship of an icon, namely meaning, task and mental image, which inherits the triadic relationship of a sign. User testing with the application and a post-pilot questionnaire are conducted as the experimental approach in two rural villages in India. Icons belonging to concrete taxonomy perform better than abstract icons on the premise that the design of the icon fulfills the underlying rules of the proposed triadic relationship.

Shear Buckling of a Large Pultruded Composite I-Section under Asymmetric Loading

An experimental and analytical research on shear buckling of a comparably large polymer composite I-section is presented. It is known that shear buckling load of a large span composite beam is difficult to determine experimentally. In order to sensitively detect shear buckling of the tested I-section, twenty strain rosettes and eight displacement sensors were applied and attached on the web and flange surfaces. The tested specimen was a pultruded composite beam made of vinylester resin, E-glass, carbon fibers and micro-fillers. Various coupon tests were performed before the shear buckling test to obtain fundamental material properties of the Isection. An asymmetric four-point bending loading scheme was utilized for the shear test. The loading scheme resulted in a high shear and almost zero moment condition at the center of the web panel. The shear buckling load was successfully determined after analyzing the obtained test data from strain rosettes and displacement sensors. An analytical approach was also performed to verify the experimental results and to support the discussed experimental program.

Stress and Strain Analysis of Notched Bodies Subject to Non-Proportional Loadings

In this paper, an analytical simplified method for calculating elasto-plastic stresses strains of notched bodies subject to non-proportional loading paths is discussed. The method was based on the Neuber notch correction, which relates the incremental elastic and elastic-plastic strain energy densities at the notch root and the material constitutive relationship. The validity of the method was presented by comparing computed results of the proposed model against finite element numerical data of notched shaft. The comparison showed that the model estimated notch-root elasto-plastic stresses strains with good accuracy using linear-elastic stresses. The prosed model provides more efficient and simple analysis method preferable to expensive experimental component tests and more complex and time consuming incremental non-linear FE analysis. The model is particularly suitable to perform fatigue life and fatigue damage estimates of notched components subjected to nonproportional loading paths.

Effect of Alloying Elements and Hot Forging/Rolling Reduction Ratio on Hardness and Impact Toughness of Heat Treated Low Alloy Steels

The present study was carried out to investigate the effect of alloying elements and thermo-mechanical treatment (TMT) i.e. hot rolling and forging with different reduction ratios on the hardness (HV) and impact toughness (J) of heat-treated low alloy steels. An understanding of the combined effect of TMT and alloying elements and by measuring hardness, impact toughness, resulting from different heat treatment following TMT of the low alloy steels, it is possible to determine which conditions yielded optimum mechanical properties and high strength to weight ratio. Experimental Correlations between hot work reduction ratio, hardness and impact toughness for thermo-mechanically heat treated low alloy steels are analyzed quantitatively, and both regression and mathematical hardness and impact toughness models are developed.

Stabilization of Fly Ash Slope Using Plastic Recycled Polymer and Finite Element Analysis Using Plaxis 3D

The model tests were conducted in the laboratory without and with Plastic recycled polymer in fly ash steep slopes overlaying soft foundation soils like fly ash and powai soil in order to check the stability of steep slope. In this experiment, fly ash is used as a filling material and Plastic Recycled Polymers of diameter = 3mm and length = 4mm were made from waste plastic product (lower grade plastic product). The properties of fly ash and Plastic recycled polymers are determined. From the experiments, load and settlement have measured. From these data, load –settlement curves have reported. It has been observed from test results that load carrying capacity of mixture fly ash with Plastic Recycled Polymers slope is more than that of fly ash slope. The deformation of Plastic Recycled Polymers slope is slightly more than that of fly ash slope. A Finite Element Method (F.E.M.) was also evaluated using PLAXIS 3D version. The failure pattern, deformations and factor of safety are reported based on analytical programme. The results from experimental data and analytical programme are compared and reported.

Colour Image Compression Method Based On Fractal Block Coding Technique

Image compression based on fractal coding is a lossy compression method and normally used for gray level images range and domain blocks in rectangular shape. Fractal based digital image compression technique provide a large compression ratio and in this paper, it is proposed using YUV colour space and the fractal theory which is based on iterated transformation. Fractal geometry is mainly applied in the current study towards colour image compression coding. These colour images possesses correlations among the colour components and hence high compression ratio can be achieved by exploiting all these redundancies. The proposed method utilises the self-similarity in the colour image as well as the cross-correlations between them. Experimental results show that the greater compression ratio can be achieved with large domain blocks but more trade off in image quality is good to acceptable at less than 1 bit per pixel.

Online Forums Hotspot Detection and Analysis Using Aging Theory

The exponential growth of social media arouses much attention on public opinion information. The online forums, blogs, micro blogs are proving to be extremely valuable resources and are having bulk volume of information. However, most of the social media data is unstructured and semi structured form. So that it is more difficult to decipher automatically. Therefore, it is very much essential to understand and analyze those data for making a right decision. The online forums hotspot detection is a promising research field in the web mining and it guides to motivate the user to take right decision in right time. The proposed system consist of a novel approach to detect a hotspot forum for any given time period. It uses aging theory to find the hot terms and E-K-means for detecting the hotspot forum. Experimental results demonstrate that the proposed approach outperforms k-means for detecting the hotspot forums with the improved accuracy.

Dissolution Leaching Kinetics of Ulexite in Disodium Hydrogen Phosphate Solutions

Ulexite (Na2O.2CaO.5B2O3.16H2O) is boron mineral that is found in large quantities in the Turkey and world. In this study, the dissolution of this mineral in the disodium hydrogen phosphate solutions has been studied. Temperature, concentration, stirring speed, solid liquid ratio and particle size were selected as parameters. The experimental results were successfully correlated by linear regression using Statistica program. Dissolution curves were evaluated shrinking core models for solid-fluid systems. It was observed that increase in the reaction temperature and decrease in the solid/liquid ratio causes an increase the dissolution rate of ulexite. The activation energy was found to be 63.4 kJ/mol. The leaching of ulexite was controlled by chemical reaction.

3D Finite Element Analysis for Mechanics of Soil-Tool Interaction

This paper is part of a study to develop robots for farming. As such power requirement to operate equipment attach to such robots become an important factor. Soil-tool interaction plays major role in power consumption, thus predicting accurately the forces which act on the blade during the farming is very important for optimal designing of farm equipment. In this paper, a finite element investigation for tillage tools and soil interaction is described by using an inelastic constitutive material law for agriculture application. A 3-dimensional (3D) nonlinear finite element analysis (FEA) is developed to examine behavior of a blade with different rake angles moving in a block of soil, and to estimate the blade force. The soil model considered is an elastic-plastic with non-associated Drucker-Prager material model. Special use of contact elements are employed to consider connection between soil-blade and soil-soil surfaces. The FEA results are compared with experimental ones, which show good agreement in accurately predicting draft forces developed on the blade when it moves through the soil. Also a very good correlation was obtained between FEA results and analytical results from classical soil mechanics theories for straight blades. These comparisons verified the FEA model developed. For analyzing complicated soil-tool interactions and for optimum design of blades, this method will be useful.