Minimum Energy of a Prismatic Joint with out: Actuator: Application on RRP Robot

This research proposes the state of art on how to control or find the trajectory paths of the RRP robot when the prismatic joint is malfunction. According to this situation, the minimum energy of the dynamic optimization is applied. The RRP robot or similar systems have been used in many areas such as fire fighter truck, laboratory equipment and military truck for example a rocket launcher. In order to keep on task that assigned, the trajectory paths must be computed. Here, the open loop control is applied and the result of an example show the reasonable solution which can be applied to the controllable system.

Dynamic Shock Bank Liquidity Analysis

Simulations are developed in this paper with usual DSGE model equations. The model is based on simplified version of Smets-Wouters equations in use at European Central Bank which implies 10 macro-economic variables: consumption, investment, wages, inflation, capital stock, interest rates, production, capital accumulation, labour and credit rate, and allows take into consideration the banking system. Throughout the simulations, this model will be used to evaluate the impact of rate shocks recounting the actions of the European Central Bank during 2008.

Design of Gain Scheduled Fuzzy PID Controller

An adaptive fuzzy PID controller with gain scheduling is proposed in this paper. The structure of the proposed gain scheduled fuzzy PID (GS_FPID) controller consists of both fuzzy PI-like controller and fuzzy PD-like controller. Both of fuzzy PI-like and PD-like controllers are weighted through adaptive gain scheduling, which are also determined by fuzzy logic inference. A modified genetic algorithm called accumulated genetic algorithm is designed to learn the parameters of fuzzy inference system. In order to learn the number of fuzzy rules required for the TSK model, the fuzzy rules are learned in an accumulated way. In other words, the parameters learned in the previous rules are accumulated and updated along with the parameters in the current rule. It will be shown that the proposed GS_FPID controllers learned by the accumulated GA perform well for not only the regular linear systems but also the higher order and time-delayed systems.

Plant Varieties Selection System

In the end of the day, meteorological data and environmental data becomes widely used such as plant varieties selection system. Variety plant selection for planted area is of almost importance for all crops, including varieties of sugarcane. Since sugarcane have many varieties. Variety plant non selection for planting may not be adapted to the climate or soil conditions for planted area. Poor growth, bloom drop, poor fruit, and low price are to be from varieties which were not recommended for those planted area. This paper presents plant varieties selection system for planted areas in Thailand from meteorological data and environmental data by the use of decision tree techniques. With this software developed as an environmental data analysis tool, it can analyze resulting easier and faster. Our software is a front end of WEKA that provides fundamental data mining functions such as classify, clustering, and analysis functions. It also supports pre-processing, analysis, and decision tree output with exporting result. After that, our software can export and display data result to Google maps API in order to display result and plot plant icons effectively.

High Level Synthesis of Digital Filters Based On Sub-Token Forwarding

High level synthesis (HLS) is a process which generates register-transfer level design for digital systems from behavioral description. There are many HLS algorithms and commercial tools. However, most of these algorithms consider a behavioral description for the system when a single token is presented to the system. This approach does not exploit extra hardware efficiently, especially in the design of digital filters where common operations may exist between successive tokens. In this paper, we modify the behavioral description to process multiple tokens in parallel. However, this approach is unlike the full processing that requires full hardware replication. It exploits the presence of common operations between successive tokens. The performance of the proposed approach is better than sequential processing and approaches that of full parallel processing as the hardware resources are increased.

The Impact of Bus Rapid Transit on Land Development: A Case Study of Beijing, China

Bus Rapid Transit (BRT) has emerged as a cost-effective transport system for urban mobility. However its ability to stimulate land development remains largely unexplored. The study makes use of qualitative (interview method) and quantitative analysis (questionnaire survey and longitudinal analysis of property data) to investigate land development impact resulting from BRT in Beijing, China. The empirical analysis suggests that BRT has a positive impact on the residential and commercial property attractiveness along the busway corridor. The statistical analysis suggests that accessibility advantage conferred by BRT is capitalized into higher property price. The average price of apartments adjacent to a BRT station has gained a relatively faster increase than those not served by the BRT system. The capitalization effect mostly occurs after the full operation of BRT, and is more evident over time and particularly observed in areas which previously lack alternative mobility opportunity.

Content-based Retrieval of Medical Images

With the advance of multimedia and diagnostic images technologies, the number of radiographic images is increasing constantly. The medical field demands sophisticated systems for search and retrieval of the produced multimedia document. This paper presents an ongoing research that focuses on the semantic content of radiographic image documents to facilitate semantic-based radiographic image indexing and a retrieval system. The proposed model would divide a radiographic image document, based on its semantic content, and would be converted into a logical structure or a semantic structure. The logical structure represents the overall organization of information. The semantic structure, which is bound to logical structure, is composed of semantic objects with interrelationships in the various spaces in the radiographic image.

A Study on the Modeling and Analysis of an Electro-Hydraulic Power Steering System

Electro-hydraulic power steering (EHPS) system for the fuel rate reduction and steering feel improvement is comprised of ECU including the logic which controls the steering system and BL DC motor and produces the best suited cornering force, BLDC motor, high pressure pump integrated module and basic oil-hydraulic circuit of the commercial HPS system. Electro-hydraulic system can be studied in two ways such as experimental and computer simulation. To get accurate results in experimental study of EHPS system, the real boundary management is necessary which is difficult task. And the accuracy of the experimental results depends on the preparation of the experimental setup and accuracy of the data collection. The computer simulation gives accurate and reliable results if the simulation is carried out considering proper boundary conditions. So, in this paper, each component of EHPS was modeled, and the model-based analysis and control logic was designed by using AMESim

Cardiopulmonary Exercise Testing in Young Asthmatic Children Ages 6-10 Years Old

The aim of this study was to establish the feasibility of a minute incremental exercise testing protocol in young asthma children. Twenty-two children with clinically diagnosed mild to moderate asthma volunteered to participate. The maximum incremental exercise test was performed using a cycle ergometer with an electromagnetic braking. A warm-up unloaded for 2 minutes then the workload was started at 40 watts for 2 minutes, and then stepwise increments of 8 watts per 2 minutes were applied. The pedaling frequency was set at 50 rpm. Ventilation and gas exchange were measured with a breath-by-breath automatic metabolic measurement system. Results showed that this test was well tolerated by all asthmatic children. Most of the children reached the VO2 plateau and satisfied the criteria for maximal respiratory exchange ratio of ≥ 1. This Study demonstrated that this testing protocol was suitable for young asthmatic children.

Experimental Study of Eccentrically Loaded Columns Strengthened Using a Steel Jacketing Technique

An experimental study of Reinforced Concrete, RC, columns strengthened using a steel jacketing technique was conducted. The jacketing technique consisted of four steel vertical angles installed at the corners of the column joined by horizontal steel straps confining the column externally. The effectiveness of the technique was evaluated by testing the RC column specimens under eccentric monotonic loading until failure occurred. Strain gauges were installed to monitor the strains in the internal reinforcement as well as the external jacketing system. The effectiveness of the jacketing technique was demonstrated, and the parameters affecting the technique were studied.

Tracking Control of a Linear Parabolic PDE with In-domain Point Actuators

This paper addresses the problem of asymptotic tracking control of a linear parabolic partial differential equation with indomain point actuation. As the considered model is a non-standard partial differential equation, we firstly developed a map that allows transforming this problem into a standard boundary control problem to which existing infinite-dimensional system control methods can be applied. Then, a combination of energy multiplier and differential flatness methods is used to design an asymptotic tracking controller. This control scheme consists of stabilizing state-feedback derived from the energy multiplier method and feed-forward control based on the flatness property of the system. This approach represents a systematic procedure to design tracking control laws for a class of partial differential equations with in-domain point actuation. The applicability and system performance are assessed by simulation studies.

Hybrid Model Based on Artificial Immune System and Cellular Automata

The hybridization of artificial immune system with cellular automata (CA-AIS) is a novel method. In this hybrid model, the cellular automaton within each cell deploys the artificial immune system algorithm under optimization context in order to increase its fitness by using its neighbor-s efforts. The hybrid model CA-AIS is introduced to fix the standard artificial immune system-s weaknesses. The credibility of the proposed approach is evaluated by simulations and it shows that the proposed approach achieves better results compared to standard artificial immune system.

A New blaVIM Gene in a Pseudomonas putida Isolated from ENT Units in Sulaimani Hospitals

A total of twenty tensile biopsies were collected from children undergoing tonsillectomy from teaching hospital ENT department and Kurdistan private hospital in sulaimani city. All biopsies were homogenized and cultured; the obtained bacterial isolates were purified and identified by biochemical tests and VITEK 2 compact system. Among the twenty studied samples, only one Pseudomonas putida with probability of 99% was isolated. Antimicrobial susceptibility was carried out by disk diffusion method, Pseudomonas putida showed resistance to all antibiotics used except vancomycin. The isolate further subjected to PCR and DNA sequence analysis of blaVIM gene using different set of primers for different regions of VIM gene. The results were found to be PCR positive for the blaVIM gene. To determine the sequence of blaVIM gene, DNA sequencing performed. Sequence alignment of blaVIM gene with previously recorded blaVIM gene in NCBI- database showed that P. putida isolate have different blaVIM gene.

A Simplified Approach for Load Flow Analysis of Radial Distribution Network

This paper presents a simple approach for load flow analysis of a radial distribution network. The proposed approach utilizes forward and backward sweep algorithm based on Kirchoff-s current law (KCL) and Kirchoff-s voltage law (KVL) for evaluating the node voltages iteratively. In this approach, computation of branch current depends only on the current injected at the neighbouring node and the current in the adjacent branch. This approach starts from the end nodes of sub lateral line, lateral line and main line and moves towards the root node during branch current computation. The node voltage evaluation begins from the root node and moves towards the nodes located at the far end of the main, lateral and sub lateral lines. The proposed approach has been tested using four radial distribution systems of different size and configuration and found to be computationally efficient.

The Impact of Upgrades on ERP System Reliability

Constant upgrading of Enterprise Resource Planning (ERP) systems is necessary, but can cause new defects. This paper attempts to model the likelihood of defects after completed upgrades with Weibull defect probability density function (PDF). A case study is presented analyzing data of recorded defects obtained for one ERP subsystem. The trends are observed for the value of the parameters relevant to the proposed statistical Weibull distribution for a given one year period. As a result, the ability to predict the appearance of defects after the next upgrade is described.

Understanding Cultural Influences: Principles for Personalized E-learning Systems

In the globalized e-learning environment, students coming from different cultures and countries have different characteristics and require different support designed for their approaches to study and learning styles. This paper explores the ways in which cultural background influences students- approaches to study and learning styles. Participants in the study consisted of 131 eastern students and 54 western students from an Australian university. The students were tested using the Study Process Questionnaire (SPQ) for assessing their approaches to study and the Index of Learning Styles Questionnaire (ILS) for assessing their learning styles. The results of the study led to a set of principles being proposed to guide personalization of e-learning system design on the basis of cultural differences.

Development of Automatic Guided Mobile Robot Using Magnetic Position Meter

In this paper, an automatic guided mobile robot using a new magnetic position meter is described. In order to measure the lateral position of a mobile robot, a new magnetic position meter is developed. The magnetic position meter can detect the position of a magnetic wire on the center of road. A mobile robot in designed with a sensing system, a steering system and a driving system. The designed mobile robot is tested to verify the performance of automatic guidance.

Predictability Analysis on HIV/AIDS System using Hurst Exponents

Methods of contemporary mathematical physics such as chaos theory are useful for analyzing and understanding the behavior of complex biological and physiological systems. The three dimensional model of HIV/AIDS is the basis of active research since it provides a complete characterization of disease dynamics and the interaction of HIV-1 with the immune system. In this work, the behavior of the HIV system is analyzed using the three dimensional HIV model and a chaotic measure known as the Hurst exponent. Results demonstrate that Hurst exponents of CD4, CD8 cells and viral load vary nonlinearly with respect to variations in system parameters. Further, it was observed that the three dimensional HIV model can accommodate both persistent (H>0.5) and anti-persistent (H

An Analysis of Acoustic Function and Navier-Stokes Equations in Aerodynamic

Acoustic function plays an important role in aerodynamic mechanical engineering. It can classify the kind of air-vehicle such as subsonic or supersonic. Acoustic velocity relates with velocity and Mach number. Mach number relates again acoustic stability or instability condition. Mach number plays an important role in growth or decay in energy system. Acoustic is a function of temperature and temperature is directly proportional to pressure. If we control the pressure, we can control acoustic function. To get pressure stability condition, we apply Navier-Stokes equations.

Equatorial Symmetry of Chaotic Solutions in Boussinesq Convection in a Rotating Spherical Shell

We investigate properties of convective solutions of the Boussinesq thermal convection in a moderately rotating spherical shell allowing the inner and outer sphere rotation due to the viscous torque of the fluid. The ratio of the inner and outer radii of the spheres, the Prandtl number and the Taylor number are fixed to 0.4, 1 and 5002, respectively. The inertial moments of the inner and outer spheres are fixed to about 0.22 and 100, respectively. The Rayleigh number is varied from 2.6 × 104 to 3.4 × 104. In this parameter range, convective solutions transit from equatorially symmetric quasiperiodic ones to equatorially asymmetric chaotic ones as the Rayleigh number is increased. The transition route in the system allowing rotation of both the spheres is different from that in the co-rotating system, which means the inner and outer spheres rotate with the same constant angular velocity: the convective solutions transit as equatorially symmetric quasi-periodic solution → equatorially symmetric chaotic solution → equatorially asymmetric chaotic solution in the system allowing both the spheres rotation, while equatorially symmetric quasi-periodic solution → equatorially asymmetric quasiperiodic solution → equatorially asymmetric chaotic solution in the co-rotating system.