Chaotic Properties of Hemodynamic Responsein Functional Near Infrared Spectroscopic Measurement of Brain Activity

Functional near infrared spectroscopy (fNIRS) is a practical non-invasive optical technique to detect characteristic of hemoglobin density dynamics response during functional activation of the cerebral cortex. In this paper, fNIRS measurements were made in the area of motor cortex from C4 position according to international 10-20 system. Three subjects, aged 23 - 30 years, were participated in the experiment. The aim of this paper was to evaluate the effects of different motor activation tasks of the hemoglobin density dynamics of fNIRS signal. The chaotic concept based on deterministic dynamics is an important feature in biological signal analysis. This paper employs the chaotic properties which is a novel method of nonlinear analysis, to analyze and to quantify the chaotic property in the time series of the hemoglobin dynamics of the various motor imagery tasks of fNIRS signal. Usually, hemoglobin density in the human brain cortex is found to change slowly in time. An inevitable noise caused by various factors is to be included in a signal. So, principle component analysis method (PCA) is utilized to remove high frequency component. The phase pace is reconstructed and evaluated the Lyapunov spectrum, and Lyapunov dimensions. From the experimental results, it can be conclude that the signals measured by fNIRS are chaotic.

Development of Position Changing System for Obstructive Sleep Apnea Patient using HRV

Obstructive sleep apnea in patients, between 70 and 80 percent, can be cured with just a posture correcting. The most import thing to do this is detection of obstructive sleep apnea. Detection of obstructive sleep apnea can be performed through heart rate variability analysis using power spectrum density analysis. After HRV analysis we needed to know the current position information for correcting the position. The pressure sensors of the array type were used to obtain position information. These sensors can obtain information from the experimenter about position. In addition, air cylinder corrected the position of the experimenter by lifting the bed. The experimenter can be changed position without breaking during sleep by the system. Polysomnograph recording were obtained from 10 patients. The results of HRV analysis were that NLF and LF/HF ratio increased, while NHF decreased during OSA. Position change had to be done the periods.

Coordinated Design of TCSC Controller and PSS Employing Particle Swarm Optimization Technique

This paper investigates the application of Particle Swarm Optimization (PSO) technique for coordinated design of a Power System Stabilizer (PSS) and a Thyristor Controlled Series Compensator (TCSC)-based controller to enhance the power system stability. The design problem of PSS and TCSC-based controllers is formulated as a time domain based optimization problem. PSO algorithm is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. To compare the capability of PSS and TCSC-based controller, both are designed independently first and then in a coordinated manner for individual and coordinated application. The proposed controllers are tested on a weakly connected power system. The eigenvalue analysis and non-linear simulation results are presented to show the effectiveness of the coordinated design approach over individual design. The simulation results show that the proposed controllers are effective in damping low frequency oscillations resulting from various small disturbances like change in mechanical power input and reference voltage setting.

A Novel Fuzzy-Neural Based Medical Diagnosis System

In this paper, application of artificial neural networks in typical disease diagnosis has been investigated. The real procedure of medical diagnosis which usually is employed by physicians was analyzed and converted to a machine implementable format. Then after selecting some symptoms of eight different diseases, a data set contains the information of a few hundreds cases was configured and applied to a MLP neural network. The results of the experiments and also the advantages of using a fuzzy approach were discussed as well. Outcomes suggest the role of effective symptoms selection and the advantages of data fuzzificaton on a neural networks-based automatic medical diagnosis system.

An Evaluation of Requirements Management and Traceability Tools

Requirements management is critical to software delivery success and project lifecycle. Requirements management and their traceability provide assistance for many software engineering activities like impact analysis, coverage analysis, requirements validation and regression testing. In addition requirements traceability is the recognized component of many software process improvement initiatives. Requirements traceability also helps to control and manage evolution of a software system. This paper aims to provide an evaluation of current requirements management and traceability tools. Management and test managers require an appropriate tool for the software under test. We hope, evaluation identified here will help to select the efficient and effective tool.

Performance of Chaotic Lu System in CDMA Satellites Communications Systems

This paper investigates the problem of spreading sequence and receiver code synchronization techniques for satellite based CDMA communications systems. The performance of CDMA system depends on the autocorrelation and cross-correlation properties of the used spreading sequences. In this paper we propose the uses of chaotic Lu system to generate binary sequences for spreading codes in a direct sequence spread CDMA system. To minimize multiple access interference (MAI) we propose the use of genetic algorithm for optimum selection of chaotic spreading sequences. To solve the problem of transmitter-receiver synchronization, we use the passivity controls. The concept of semipassivity is defined to find simple conditions which ensure boundedness of the solutions of coupled Lu systems. Numerical results are presented to show the effectiveness of the proposed approach.

Integration of Acceleration Feedback Control with Automatic Generation Control in Intelligent Load Frequency Control

This paper investigates the effects of knowledge-based acceleration feedback control integrated with Automatic Generation Control (AGC) to enhance the quality of frequency control of governing system. The Intelligent Acceleration Feedback Controller (IAFC) is proposed to counter the over and under frequency occurrences due to major load change in power system network. Therefore, generator tripping and load shedding operations can be reduced. Meanwhile, the integration of IAFC with AGC, a well known Load-Frequency Control (LFC) is essential to ensure the system frequency is restored to the nominal value. Computer simulations of frequency response of governing system are used to optimize the parameters of IAFC. As a result, there is substantial improvement on the LFC of governing system that employing the proposed control strategy.

The Influence of Voltage Flicker for the Wind Generator upon Distribution System

One of the most important power quality issues is voltage flicker. Nowadays this issue also impacts the power system all over the world. The fact of the matter is that the more and the larger capacity of wind generator has been installed. Under unstable wind power situation, the variation of output current and voltage have caused trouble to voltage flicker. Hence, the major purpose of this study is to analyze the impact of wind generator on voltage flicker of power system. First of all, digital simulation and analysis are carried out based on wind generator operating under various system short circuit capacity, impedance angle, loading, and power factor of load. The simulation results have been confirmed by field measurements.

An Automatic Tool for Checking Consistency between Data Flow Diagrams (DFDs)

System development life cycle (SDLC) is a process uses during the development of any system. SDLC consists of four main phases: analysis, design, implement and testing. During analysis phase, context diagram and data flow diagrams are used to produce the process model of a system. A consistency of the context diagram to lower-level data flow diagrams is very important in smoothing up developing process of a system. However, manual consistency check from context diagram to lower-level data flow diagrams by using a checklist is time-consuming process. At the same time, the limitation of human ability to validate the errors is one of the factors that influence the correctness and balancing of the diagrams. This paper presents a tool that automates the consistency check between Data Flow Diagrams (DFDs) based on the rules of DFDs. The tool serves two purposes: as an editor to draw the diagrams and as a checker to check the correctness of the diagrams drawn. The consistency check from context diagram to lower-level data flow diagrams is embedded inside the tool to overcome the manual checking problem.

Conceptual Frameworks of Carbon Credit Registry System for Thailand

This research explores on the development of the structure of Carbon Credit Registry System those accords to the need of future events in Thailand. This research also explores the big picture of every connected system by referring to the design of each system, the Data Flow Diagram, and the design in term of the system-s data using DES standard. The purpose of this paper is to show how to design the model of each system. Furthermore, this paper can serve as guideline for designing an appropriate Carbon Credit Registry System.

EZW Coding System with Artificial Neural Networks

Image compression plays a vital role in today-s communication. The limitation in allocated bandwidth leads to slower communication. To exchange the rate of transmission in the limited bandwidth the Image data must be compressed before transmission. Basically there are two types of compressions, 1) LOSSY compression and 2) LOSSLESS compression. Lossy compression though gives more compression compared to lossless compression; the accuracy in retrievation is less in case of lossy compression as compared to lossless compression. JPEG, JPEG2000 image compression system follows huffman coding for image compression. JPEG 2000 coding system use wavelet transform, which decompose the image into different levels, where the coefficient in each sub band are uncorrelated from coefficient of other sub bands. Embedded Zero tree wavelet (EZW) coding exploits the multi-resolution properties of the wavelet transform to give a computationally simple algorithm with better performance compared to existing wavelet transforms. For further improvement of compression applications other coding methods were recently been suggested. An ANN base approach is one such method. Artificial Neural Network has been applied to many problems in image processing and has demonstrated their superiority over classical methods when dealing with noisy or incomplete data for image compression applications. The performance analysis of different images is proposed with an analysis of EZW coding system with Error Backpropagation algorithm. The implementation and analysis shows approximately 30% more accuracy in retrieved image compare to the existing EZW coding system.

Agent Decision using Granular Computing in Traffic System

In recent years multi-agent systems have emerged as one of the interesting architectures facilitating distributed collaboration and distributed problem solving. Each node (agent) of the network might pursue its own agenda, exploit its environment, develop its own problem solving strategy and establish required communication strategies. Within each node of the network, one could encounter a diversity of problem-solving approaches. Quite commonly the agents can realize their processing at the level of information granules that is the most suitable from their local points of view. Information granules can come at various levels of granularity. Each agent could exploit a certain formalism of information granulation engaging a machinery of fuzzy sets, interval analysis, rough sets, just to name a few dominant technologies of granular computing. Having this in mind, arises a fundamental issue of forming effective interaction linkages between the agents so that they fully broadcast their findings and benefit from interacting with others.

A Robust Al-Hawalees Gaming Automation using Minimax and BPNN Decision

Artificial Intelligence based gaming is an interesting topic in the state-of-art technology. This paper presents an automation of a tradition Omani game, called Al-Hawalees. Its related issues are resolved and implemented using artificial intelligence approach. An AI approach called mini-max procedure is incorporated to make a diverse budges of the on-line gaming. If number of moves increase, time complexity will be increased in terms of propositionally. In order to tackle the time and space complexities, we have employed a back propagation neural network (BPNN) to train in off-line to make a decision for resources required to fulfill the automation of the game. We have utilized Leverberg- Marquardt training in order to get the rapid response during the gaming. A set of optimal moves is determined by the on-line back propagation training fashioned with alpha-beta pruning. The results and analyses reveal that the proposed scheme will be easily incorporated in the on-line scenario with one player against the system.

Voltage Stability Investigation of Grid Connected Wind Farm

At present, it is very common to find renewable energy resources, especially wind power, connected to distribution systems. The impact of this wind power on voltage distribution levels has been addressed in the literature. The majority of this works deals with the determination of the maximum active and reactive power that is possible to be connected on a system load bus, until the voltage at that bus reaches the voltage collapse point. It is done by the traditional methods of PV curves reported in many references. Theoretical expression of maximum power limited by voltage stability transfer through a grid is formulated using an exact representation of distribution line with ABCD parameters. The expression is used to plot PV curves at various power factors of a radial system. Limited values of reactive power can be obtained. This paper presents a method to study the relationship between the active power and voltage (PV) at the load bus to identify the voltage stability limit. It is a foundation to build a permitted working operation region in complying with the voltage stability limit at the point of common coupling (PCC) connected wind farm.

Design and Implementation of Real-Time Automatic Censoring System on Chip for Radar Detection

Design and implementation of a novel B-ACOSD CFAR algorithm is presented in this paper. It is proposed for detecting radar target in log-normal distribution environment. The BACOSD detector is capable to detect automatically the number interference target in the reference cells and detect the real target by an adaptive threshold. The detector is implemented as a System on Chip on FPGA Altera Stratix II using parallelism and pipelining technique. For a reference window of length 16 cells, the experimental results showed that the processor works properly with a processing speed up to 115.13MHz and processing time0.29 ┬Ás, thus meets real-time requirement for a typical radar system.

Factors Influencing Rote Student's Intention to Use WBL: Thailand Study

Conventional WBL is effective for meaningful student, because rote student learn by repeating without thinking or trying to understand. It is impossible to have full benefit from conventional WBL. Understanding of rote student-s intention and what influences it becomes important. Poorly designed user interface will discourage rote student-s cultivation and intention to use WBL. Thus, user interface design is an important factor especially when WBL is used as comprehensive replacement of conventional teaching. This research proposes the influencing factors that can enhance student-s intention to use the system. The enhanced TAM is used for evaluating the proposed factors. The research result points out that factors influencing rote student-s intention are Perceived Usefulness of Homepage Content Structure, Perceived User Friendly Interface, Perceived Hedonic Component, and Perceived (homepage) Visual Attractiveness.

Diagnosing Dangerous Arrhythmia of Patients by Automatic Detecting of QRS Complexes in ECG

In this paper, an automatic detecting algorithm for QRS complex detecting was applied for analyzing ECG recordings and five criteria for dangerous arrhythmia diagnosing are applied for a protocol type of automatic arrhythmia diagnosing system. The automatic detecting algorithm applied in this paper detected the distribution of QRS complexes in ECG recordings and related information, such as heart rate and RR interval. In this investigation, twenty sampled ECG recordings of patients with different pathologic conditions were collected for off-line analysis. A combinative application of four digital filters for bettering ECG signals and promoting detecting rate for QRS complex was proposed as pre-processing. Both of hardware filters and digital filters were applied to eliminate different types of noises mixed with ECG recordings. Then, an automatic detecting algorithm of QRS complex was applied for verifying the distribution of QRS complex. Finally, the quantitative clinic criteria for diagnosing arrhythmia were programmed in a practical application for automatic arrhythmia diagnosing as a post-processor. The results of diagnoses by automatic dangerous arrhythmia diagnosing were compared with the results of off-line diagnoses by experienced clinic physicians. The results of comparison showed the application of automatic dangerous arrhythmia diagnosis performed a matching rate of 95% compared with an experienced physician-s diagnoses.

Effect of Crude Oil Particle Elasticity on the Separation Efficiency of a Hydrocyclone

The separation efficiency of a hydrocyclone has extensively been considered on the rigid particle assumption. A collection of experimental studies have demonstrated their discrepancies from the modeling and simulation results. These discrepancies caused by the actual particle elasticity have generally led to a larger amount of energy consumption in the separation process. In this paper, the influence of particle elasticity on the separation efficiency of a hydrocyclone system was investigated through the Finite Element (FE) simulations using crude oil droplets as the elastic particles. A Reitema-s design hydrocyclone with a diameter of 8 mm was employed to investigate the separation mechanism of the crude oil droplets from water. The cut-size diameter eter of the crude oil was 10 - Ðçm in order to fit with the operating range of the adopted hydrocylone model. Typical parameters influencing the performance of hydrocyclone were varied with the feed pressure in the range of 0.3 - 0.6 MPa and feed concentration between 0.05 – 0.1 w%. In the simulation, the Finite Element scheme was applied to investigate the particle-flow interaction occurred in the crude oil system during the process. The interaction of a single oil droplet at the size of 10 - Ðçm to the flow field was observed. The feed concentration fell in the dilute flow regime so the particle-particle interaction was ignored in the study. The results exhibited the higher power requirement for the separation of the elastic particulate system when compared with the rigid particulate system.

Evaluating the Standards of Hospital Pharmacies in Therapeutic Centers Affiliated with Kermanshah University of Medical Sciences, Iran

Nowadays pharmaceutical care departments located in hospitals are amongst the important pillars of the healthcare system. The aim of this study was to evaluate quality of hospital drugstores affiliated with Kermanshah University of Medical Sciences. In this cross-sectional study a validated questionnaire was used. The questionnaire was filled in by the one of the researchers in all seventeen hospital drugstores located in the teaching and nonteaching hospitals affiliated with Kermanshah University of Medical Sciences. The results shows that in observed hospitals,24% of pharmacy environments, 25% of pharmacy store and storage conditions, 49% of storage procedure, 25% of ordering drugs and supplies, 73% of receiving supplies (proper procedure are fallowed for receiving supplies), 35% of receiving supplies (prompt action taken if deterioration of drugs received is suspected), 23.35% of drugs delivery to patients and finally 0% of stock cards are used for proper inventory control have full compliance with standards.

Implementation of a Reed-Solomon Code as an ECC in Yet Another Flash File System

Flash memory has become an important storage device in many embedded systems because of its high performance, low power consumption and shock resistance. Multi-level cell (MLC) is developed as an effective solution for reducing the cost and increasing the storage density in recent years. However, most of flash file system cannot handle the error correction sufficiently. To correct more errors for MLC, we implement Reed-Solomon (RS) code to YAFFS, what is widely used for flash-based file system. RS code has longer computing time but the correcting ability is much higher than that of Hamming code.