A New Intelligent, Dynamic and Real Time Management System of Sewerage

The current tools for real time management of sewer systems are based on two software tools: the software of weather forecast and the software of hydraulic simulation. The use of the first ones is an important cause of imprecision and uncertainty, the use of the second requires temporal important steps of decision because of their need in times of calculation. This way of proceeding fact that the obtained results are generally different from those waited. The major idea of this project is to change the basic paradigm by approaching the problem by the "automatic" face rather than by that "hydrology". The objective is to make possible the realization of a large number of simulations at very short times (a few seconds) allowing to take place weather forecasts by using directly the real time meditative pluviometric data. The aim is to reach a system where the decision-making is realized from reliable data and where the correction of the error is permanent. A first model of control laws was realized and tested with different return-period rainfalls. The gains obtained in rejecting volume vary from 19 to 100 %. The development of a new algorithm was then used to optimize calculation time and thus to overcome the subsequent combinatorial problem in our first approach. Finally, this new algorithm was tested with 16- year-rainfall series. The obtained gains are 40 % of total volume rejected to the natural environment and of 65 % in the number of discharges.

Achieving Net Zero Energy Building in a Hot Climate Using Integrated Photovoltaic and Parabolic trough Collectors

In most existing buildings in hot climate, cooling loads lead to high primary energy consumption and consequently high CO2 emissions. These can be substantially decreased with integrated renewable energy systems. Kuwait is characterized by its dry hot long summer and short warm winter. Kuwait receives annual total radiation more than 5280 MJ/m2 with approximately 3347 h of sunshine. Solar energy systems consist of PV modules and parabolic trough collectors are considered to satisfy electricity consumption, domestic water heating, and cooling loads of an existing building. This paper presents the results of an extensive program of energy conservation and energy generation using integrated photovoltaic (PV) modules and Parabolic Trough Collectors (PTC). The program conducted on an existing institutional building intending to convert it into a Net-Zero Energy Building (NZEB) or near net Zero Energy Building (nNZEB). The program consists of two phases; the first phase is concerned with energy auditing and energy conservation measures at minimum cost and the second phase considers the installation of photovoltaic modules and parabolic trough collectors. The 2-storey building under consideration is the Applied Sciences Department at the College of Technological Studies, Kuwait. Single effect lithium bromide water absorption chillers are implemented to provide air conditioning load to the building. A numerical model is developed to evaluate the performance of parabolic trough collectors in Kuwait climate. Transient simulation program (TRNSYS) is adapted to simulate the performance of different solar system components. In addition, a numerical model is developed to assess the environmental impacts of building integrated renewable energy systems. Results indicate that efficient energy conservation can play an important role in converting the existing buildings into NZEBs as it saves a significant portion of annual energy consumption of the building. The first phase results in an energy conservation of about 28% of the building consumption. In the second phase, the integrated PV completely covers the lighting and equipment loads of the building. On the other hand, parabolic trough collectors of optimum area of 765 m2 can satisfy a significant portion of the cooling load, i.e about73% of the total building cooling load. The annual avoided CO2 emission is evaluated at the optimum conditions to assess the environmental impacts of renewable energy systems. The total annual avoided CO2 emission is about 680 metric ton/year which confirms the environmental impacts of these systems in Kuwait.

The Impact of Government Expenditure on Economic Growth: A Study of Asian Countries

Main purpose of this study is to identify the impact of government expenditure on economic growth in Asian Countries. Consequently, main objective is to analyze whether government expenditure causes economic growth in Asian countries vice versa and then scrutinizing long-run equilibrium relationship exists between them. The study completely based on secondary data. The methodology being quantitative that includes econometrical techniques of cointegration, panel fixed effects model and granger causality in the context of panel data of Asian countries; Singapore, Malaysia, Thailand, South Korea, Japan, China, Sri Lanka, India and Bhutan with 44 observations in each country, totaling to 396 observations from 1970 to 2013. The model used is the random effects panel OLS model. As with the above methodology, the study found the fascinating outcome. At first, empirical findings exhibit a momentous positive impact of government expenditure on Gross Domestic Production in Asian region. Secondly, government expenditure and economic growth indicate a long-run relationship in Asian countries. In conclusion, there is a unidirectional causality from economic growth to government expenditure and government expenditure to economic growth in Asian countries. Hence the study is validated that it is in line with the Keynesian theory and Wagner’s law as well. Consequently, it can be concluded that role of government would play a vital role in economic growth of Asian Countries. However; if government expenditure did not figure out with the economy’s needs it might be considerably inspiration the economy in a negative way so that society bears the costs.

Effect of Atmospheric Turbulence on Hybrid FSO/RF Link Availability under Qatar Harsh Climate

Although there has been a growing interest in the hybrid free-space optical link and radio frequency FSO/RF communication system, the current literature is limited to results obtained in moderate or cold environment. In this paper, using a soft switching approach, we investigate the effect of weather inhomogeneities on the strength of turbulence hence the channel refractive index under Qatar harsh environment and their influence on the hybrid FSO/RF availability. In this approach, either FSO/RF or simultaneous or none of them can be active. Based on soft switching approach and a finite state Markov Chain (FSMC) process, we model the channel fading for the two links and derive a mathematical expression for the outage probability of the hybrid system. Then, we evaluate the behavior of the hybrid FSO/RF under hazy and harsh weather. Results show that the FSO/RF soft switching renders the system outage probability less than that of each link individually. A soft switching algorithm is being implemented on FPGAs using Raptor code interfaced to the two terminals of a 1Gbps/100 Mbps FSO/RF hybrid system, the first being implemented in the region. Experimental results are compared to the above simulation results.

Public Private Partnership for Infrastructure Projects: Mapping the Key Risks

In many countries, governments have been promoting the involvement of private sector entities to enter into long-term agreements for the development and delivery of large infrastructure projects, with a focus on overcoming the limitations upon public fund of the traditional approach. The involvement of private sector through public private partnerships (PPP) brings in new capital investments, value for money and additional risks to handle. Worldwide research studies have shown that an objective, systematic, reliable and useroriented risk assessment process and an optimal allocation mechanism among different stakeholders is crucial to the successful completion. In this framework, this paper, which is the first stage of a research study, aims to identify the main risks for the delivery of PPP projects. A review of cross-countries research projects and case studies was performed to map the key risks affecting PPP infrastructure delivery. The matrix of mapping offers a summary of the frequency of factors, clustered in eleven categories: construction, design, economic, legal, market, natural, operation, political, project finance, project selection and relationship. Results will highlight the most critical risk factors, and will hopefully assist the project managers in directing the managerial attention in the further stages of risk allocation.

Theoretical Appraisal of Satisfactory Decisions: Uncertainty, Evolutionary Ideas and Beliefs, and Satisfactory Time Use

Unsatisfactory experiences due to an information shortage regarding the future pay-offs of actual choices, yield satisficing decision-making. This research will examine, for the first time in the literature, the motivation behind suboptimal decisions due to uncertainty by subjecting Adam Smith’s and Jeremy Bentham’s assumptions about the nature of the actions that lead to satisficing behavior, in order to clarify the theoretical background of a “consumption-based satisfactory time” concept. The contribution of this paper with respect to the existing literature is threefold: firstly, it is showed in this paper that Adam Smith’s uncertainty is related to the problem of the constancy of ideas and not related directly to beliefs. Secondly, possessions, as in Jeremy Bentham’s oeuvre, are assumed to be just as pleasing, as protecting and improving the actual or expected quality of life, so long as they reduce any displeasure due to the undesired outcomes of uncertainty. Finally, each consumption decision incurs its own satisfactory time period, owed to not feeling hungry, being healthy, not having transportation…etc. This reveals that the level of satisfaction is indeed a behavioral phenomenon where its value would depend on the simultaneous satisfaction derived from all activities.

Radio-Frequency Plasma Discharge Equipment for Conservation Treatments of Paper Supports

The application of cold Radio-Frequency (RF) plasma in the conservation of cultural heritage became important in the last decades due to the positive results obtained in decontamination treatments. This paper presents an equipment especially designed for cold RF plasma application on paper documents, developed within a research project. The equipment consists in two modules: the first one is designed for decontamination and cleaning treatments of any type of paper supports, while the second one can be used for coating friable papers with adequate polymers, for protection purposes. All these operations are carried out in cold radio-frequency plasma, working in gaseous nitrogen, at low pressure. In order to optimize the equipment parameters ancient paper samples infested with microorganisms have been treated in nitrogen plasma and the decontamination effects, as well as changes in surface properties (color, pH) were assessed. The microbiological analysis revealed complete decontamination at 6 minutes treatment duration; only minor modifications of the surface pH were found and the colorimetric analysis showed a slight yellowing of the support.

Investigating the Process Kinetics and Nitrogen Gas Production in Anammox Hybrid Reactor with Special Emphasis on the Role of Filter Media

Anammox is a novel and promising technology that has changed the traditional concept of biological nitrogen removal. The process facilitates direct oxidation of ammonical nitrogen under anaerobic conditions with nitrite as an electron acceptor without addition of external carbon sources. The present study investigated the feasibility of Anammox Hybrid Reactor (AHR) combining the dual advantages of suspended and attached growth media for biodegradation of ammonical nitrogen in wastewater. Experimental unit consisted of 4 nos. of 5L capacity AHR inoculated with mixed seed culture containing anoxic and activated sludge (1:1). The process was established by feeding the reactors with synthetic wastewater containing NH4-H and NO2-N in the ratio 1:1 at HRT (hydraulic retention time) of 1 day. The reactors were gradually acclimated to higher ammonium concentration till it attained pseudo steady state removal at a total nitrogen concentration of 1200 mg/l. During this period, the performance of the AHR was monitored at twelve different HRTs varying from 0.25-3.0 d with increasing NLR from 0.4 to 4.8 kg N/m3d. AHR demonstrated significantly higher nitrogen removal (95.1%) at optimal HRT of 1 day. Filter media in AHR contributed an additional 27.2% ammonium removal in addition to 72% reduction in the sludge washout rate. This may be attributed to the functional mechanism of filter media which acts as a mechanical sieve and reduces the sludge washout rate many folds. This enhances the biomass retention capacity of the reactor by 25%, which is the key parameter for successful operation of high rate bioreactors. The effluent nitrate concentration, which is one of the bottlenecks of anammox process was also minimised significantly (42.3-52.3 mg/L). Process kinetics was evaluated using first order and Grau-second order models. The first-order substrate removal rate constant was found as 13.0 d-1. Model validation revealed that Grau second order model was more precise and predicted effluent nitrogen concentration with least error (1.84±10%). A new mathematical model based on mass balance was developed to predict N2 gas in AHR. The mass balance model derived from total nitrogen dictated significantly higher correlation (R2=0.986) and predicted N2 gas with least error of precision (0.12±8.49%). SEM study of biomass indicated the presence of heterogeneous population of cocci and rod shaped bacteria of average diameter varying from 1.2-1.5 mm. Owing to enhanced NRE coupled with meagre production of effluent nitrate and its ability to retain high biomass, AHR proved to be the most competitive reactor configuration for dealing with nitrogen laden wastewater.

A Novel Approach to Improve Users Search Goal in Web Usage Mining

Web mining is to discover and extract useful Information. Different users may have different search goals when they search by giving queries and submitting it to a search engine. The inference and analysis of user search goals can be very useful for providing an experience result for a user search query. In this project, we propose a novel approach to infer user search goals by analyzing search web logs. First, we propose a novel approach to infer user search goals by analyzing search engine query logs, the feedback sessions are constructed from user click-through logs and it efficiently reflect the information needed for users. Second we propose a preprocessing technique to clean the unnecessary data’s from web log file (feedback session). Third we propose a technique to generate pseudo-documents to representation of feedback sessions for clustering. Finally we implement k-medoids clustering algorithm to discover different user search goals and to provide a more optimal result for a search query based on feedback sessions for the user.

A Two-Stage Airport Ground Movement Speed Profile Design Methodology Using Particle Swarm Optimization

Automation of airport operations can greatly improve ground movement efficiency. In this paper, we study the speed profile design problem for advanced airport ground movement control and guidance. The problem is constrained by the surface four-dimensional trajectory generated in taxi planning. A decomposed approach of two stages is presented to solve this problem efficiently. In the first stage, speeds are allocated at control points, which ensure smooth speed profiles can be found later. In the second stage, detailed speed profiles of each taxi interval are generated according to the allocated control point speeds with the objective of minimizing the overall fuel consumption. We present a swarm intelligence based algorithm for the first-stage problem and a discrete variable driven enumeration method for the second-stage problem, since it only has a small set of discrete variables. Experimental results demonstrate the presented methodology performs well on real world speed profile design problems.

A Survey of Model Comparison Strategies and Techniques in Model Driven Engineering

This survey paper shows the recent state of model comparison as it’s applies to Model Driven engineering. In Model Driven Engineering to calculate the difference between the models is a very important and challenging task. There are number of tasks involved in model differencing that firstly starts with identifying and matching the elements of the model. In this paper, we discuss how model matching is accomplished, the strategies, techniques and the types of the model. We also discuss the future direction. We found out that many of the latest model comparison strategies are geared near enabling Meta model and similarity based matching. Therefore model versioning is the most dominant application of the model comparison. Recently to work on comparison for versioning has begun to deteriorate, giving way to different applications. Ultimately there is wide change among the tools in the measure of client exertion needed to perform model comparisons, as some require more push to encourage more sweeping statement and expressive force.

A Preliminary Study for Design of Automatic Block Reallocation Algorithm with Genetic Algorithm Method in the Land Consolidation Projects

Land reallocation is one of the most important steps in land consolidation projects. Many different models were proposed for land reallocation in the literature such as Fuzzy Logic, block priority based land reallocation and Spatial Decision Support Systems. A model including four parts is considered for automatic block reallocation with genetic algorithm method in land consolidation projects. These stages are preparing data tables for a project land, determining conditions and constraints of land reallocation, designing command steps and logical flow chart of reallocation algorithm and finally writing program codes of Genetic Algorithm respectively. In this study, we designed the first three steps of the considered model comprising four steps.

Line Heating Forming: Methodology and Application Using Kriging and Fifth Order Spline Formulations

In this article, a method is presented to effectively estimate the deformed shape of a thick plate due to line heating. The method uses a fifth order spline interpolation, with up to C3 continuity at specific points to compute the shape of the deformed geometry. First and second order derivatives over a surface are the resulting parameters of a given heating line on a plate. These parameters are determined through experiments and/or finite element simulations. Very accurate kriging models are fitted to real or virtual surfaces to build-up a database of maps. Maps of first and second order derivatives are then applied on numerical plate models to evaluate their evolving shapes through a sequence of heating lines. Adding an optimization process to this approach would allow determining the trajectories of heating lines needed to shape complex geometries, such as Francis turbine blades.

Forming Limit Analysis of DP600-800 Steels

In this work, the plastic behaviour of cold-rolled zinc coated dual-phase steel sheets DP600 and DP800 grades is firstly investigated with the help of uniaxial, hydraulic bulge and Forming Limit Curve (FLC) tests. The uniaxial tensile tests were performed in three angular orientations with respect to the rolling direction to evaluate the strain-hardening and plastic anisotropy. True stressstrain curves at large strains were determined from hydraulic bulge testing and fitted to a work-hardening equation. The limit strains are defined at both localized necking and fracture conditions according to Nakajima’s hemispherical punch procedure. Also, an elasto-plastic localization model is proposed in order to predict strain and stress based forming limit curves. The investigated dual-phase sheets showed a good formability in the biaxial stretching and drawing FLC regions. For both DP600 and DP800 sheets, the corresponding numerical predictions overestimated and underestimated the experimental limit strains in the biaxial stretching and drawing FLC regions, respectively. This can be attributed to the restricted failure necking condition adopted in the numerical model, which is not suitable to describe the tensile and shear fracture mechanisms in advanced high strength steels under equibiaxial and biaxial stretching conditions.

Extending the Quantum Entropy to Multidimensional Signal Processing

This paper treats different aspects of entropy measure in classical information theory and statistical quantum mechanics, it presents the possibility of extending the definition of Von Neumann entropy to image and array processing. In the first part, we generalize the quantum entropy using singular values of arbitrary rectangular matrices to measure the randomness and the quality of denoising operation, this new definition of entropy can be implemented to compare the performance analysis of filtering methods. In the second part, we apply the concept of pure state in quantum formalism to generalize the maximum entropy method for narrowband and farfield source localization problem. Several computer simulation results are illustrated to demonstrate the effectiveness of the proposed techniques.

Sensory Acceptability of Novel Sorrel/Roselle (Hibiscus sabdariffa L.)

Consumers are demanding novel beverages that are healthier, convenient and have appealing consumer acceptance. The objectives of this study were to investigate the effects of adding grape polyphenols and the influence of presenting health claims on the sensory acceptability of wines. Fresh red sorrel calyces were fermented into wines. The total soluble solids of the pectinase-treated sorrel puree were from 4°Brix to 23.8°Brix. Polyphenol in the form of grape pomace extract was added to sorrel wines (w/v) in specified levels to give 0. 25. 50 and 75 ppm. A focus group comprising of 12 panelists was use to select the level of polyphenol to be added to sorrel wines for sensory preference The sensory attributed of the wines which were evaluated were colour, clarity, aroma, flavor, mouth-feel, sweetness, astringency and overall preference. The sorrel wine which was most preferred from focus group evaluation was presented for hedonic rating. In the first stage of hedonic testing, the sorrel wine was served chilled at 7°C for 24 h prior to sensory evaluation. Each panelist was provided with a questionnaire and was asked to rate the wines on colour, aroma, flavor, mouth-feel, sweetness, astringency and overall acceptability using a 9-point hedonic scale. In the second stage of hedonic testing, the panelist were instructed to read a health abstract on the health benefits of polyphenolic compounds and again to rate sorrel wine with added 25 ppm polyphenol. Paired t-test was used for the analysis of the influence of presenting health information on polyphenols on hedonic scoring of sorrel wines. Focus groups found that the addition of polyphenol addition had no significant effect on sensory color and aroma but affected clarity and flavor. A 25 ppm wine was liked moderately in overall acceptability. The presentation of information on the health benefit of polyphenols in sorrel wines to panelists had no significant influence on the sensory acceptance of wine. More than half of panelists would drink this wine now and then. This wine had color L 19.86±0.68, chroma 2.10±0.12, hue° 16.90 ±3.10 and alcohol content of 13.0%. The sorrel wine was liked moderately in overall acceptability with the added polyphenols.

Bubble Point Pressures of CO2+Ethyl Palmitate by a Cubic Equation of State and the Wong-Sandler Mixing Rule

This study presents three different approaches to estimate bubble point pressures for the binary system of CO2 and ethyl palmitate fatty acid ethyl ester. The first method involves the Peng-Robinson (PR) Equation of State (EoS) with the conventional mixing rule of Van der Waals. The second approach involves the PR EOS together with the Wong Sandler (WS) mixing rule, coupled with the UNIQUAC GE model. In order to model the bubble point pressures with this approach, the volume and area parameter for ethyl palmitate were estimated by the Hansen group contribution method. The last method involved the Peng-Robinson, combined with the Wong-Sandler method, but using NRTL as the GE model. Results using the Van der Waals mixing rule clearly indicated that this method has the largest errors among all three methods, with errors in the range of 3.96-6.22%. The PR-WS-UNIQUAC method exhibited small errors, with average absolute deviations between 0.95 to 1.97 percent. The PR-WS-NRTL method led to the least errors, where average absolute deviations ranged between 0.65-1.7%.

Bed Evolution under One-Episode Flushing in a Truck Sewer in Paris, France

Sewer deposits have been identified as a major cause of dysfunctions in combined sewer systems regarding sewer management, which induces different negative consequents resulting in poor hydraulic conveyance, environmental damages as well as worker’s health. In order to overcome the problematics of sedimentation, flushing has been considered as the most operative and cost-effective way to minimize the sediments impacts and prevent such challenges. Flushing, by prompting turbulent wave effects, can modify the bed form depending on the hydraulic properties and geometrical characteristics of the conduit. So far, the dynamics of the bed-load during high-flow events in combined sewer systems as a complex environment is not well understood, mostly due to lack of measuring devices capable to work in the “hostile” in combined sewer system correctly. In this regards, a one-episode flushing issue from an opening gate valve with weir function was carried out in a trunk sewer in Paris to understand its cleansing efficiency on the sediments (thickness: 0-30 cm). During more than 1h of flushing within 5 m distance in downstream of this flushing device, a maximum flowrate and a maximum level of water have been recorded at 5 m in downstream of the gate as 4.1 m3/s and 2.1 m respectively. This paper is aimed to evaluate the efficiency of this type of gate for around 1.1 km (from the point -50 m to +1050 m in downstream from the gate) by (i) determining bed grain-size distribution and sediments evolution through the sewer channel, as well as their organic matter content, and (ii) identifying sections that exhibit more changes in their texture after the flush. For the first one, two series of sampling were taken from the sewer length and then analyzed in laboratory, one before flushing and second after, at same points among the sewer channel. Hence, a non-intrusive sampling instrument has undertaken to extract the sediments smaller than the fine gravels. The comparison between sediments texture after the flush operation and the initial state, revealed the most modified zones by the flush effect, regarding the sewer invert slope and hydraulic parameters in the zone up to 400 m from the gate. At this distance, despite the increase of sediment grain-size rages, D50 (median grainsize) varies between 0.6 mm and 1.1 mm compared to 0.8 mm and 10 mm before and after flushing, respectively. Overall, regarding the sewer channel invert slope, results indicate that grains smaller than sands (< 2 mm) are more transported to downstream along about 400 m from the gate: in average 69% before against 38% after the flush with more dispersion of grain-sizes distributions. Furthermore, high effect of the channel bed irregularities on the bed material evolution has been observed after the flush.

Exploring SL Writing and SL Sensitivity during Writing Tasks: Poor and Advanced Writing in a Context of Second Language Other than English

This study integrates a larger research empirical project that examines second language (SL) learners’ profiles and valid procedures to perform complete and diagnostic assessment in schools. 102 learners of Portuguese as a SL aged 7 and 17 years speakers of distinct home languages were assessed in several linguistic tasks. In this article, we focused on writing performance in the specific task of narrative essay composition. The written outputs were measured using the score in six components adapted from an English SL assessment context (Alberta Education): linguistic vocabulary, grammar, syntax, strategy, socio-linguistic, and discourse. The writing processes and strategies in Portuguese language used by different immigrant students were analysed to determine features and diversity of deficits on authentic texts performed by SL writers. Differentiated performance was based on the diversity of the following variables: grades, previous schooling, home language, instruction in first language, and exposure to Portuguese as Second Language. Indo-Aryan languages speakers showed low writing scores compared to their peers and the type of language and respective cognitive mapping (such as Mandarin and Arabic) was the predictor, not linguistic distance. Home language instruction should also be prominently considered in further research to understand specificities of cognitive academic profile in a Romance languages learning context. Additionally, this study also examined the teachers’ representations that will be here addressed to understand educational implications of second language teaching in psychological distress of different minorities in schools of specific host countries.

Joint Training Offer Selection and Course Timetabling Problems: Models and Algorithms

In this article, we deal with a variant of the classical course timetabling problem that has a practical application in many areas of education. In particular, in this paper we are interested in high schools remedial courses. The purpose of such courses is to provide under-prepared students with the skills necessary to succeed in their studies. In particular, a student might be under prepared in an entire course, or only in a part of it. The limited availability of funds, as well as the limited amount of time and teachers at disposal, often requires schools to choose which courses and/or which teaching units to activate. Thus, schools need to model the training offer and the related timetabling, with the goal of ensuring the highest possible teaching quality, by meeting the above-mentioned financial, time and resources constraints. Moreover, there are some prerequisites between the teaching units that must be satisfied. We first present a Mixed-Integer Programming (MIP) model to solve this problem to optimality. However, the presence of many peculiar constraints contributes inevitably in increasing the complexity of the mathematical model. Thus, solving it through a general-purpose solver may be performed for small instances only, while solving real-life-sized instances of such model requires specific techniques or heuristic approaches. For this purpose, we also propose a heuristic approach, in which we make use of a fast constructive procedure to obtain a feasible solution. To assess our exact and heuristic approaches we perform extensive computational results on both real-life instances (obtained from a high school in Lecce, Italy) and randomly generated instances. Our tests show that the MIP model is never solved to optimality, with an average optimality gap of 57%. On the other hand, the heuristic algorithm is much faster (in about the 50% of the considered instances it converges in approximately half of the time limit) and in many cases allows achieving an improvement on the objective function value obtained by the MIP model. Such an improvement ranges between 18% and 66%.