Avicelase Production by a Thermophilic Geobacillus stearothermophilus Isolated from Soil using Sugarcane Bagasse

Studies were carried out on the comparative study of the production of Avicelase enzyme using sugarcane bagasse-SCB in two different statuses (i.e. treated and untreated SCB) by thermophilic Geobacillus stearothermophilus at 50ºC. Only four thermophilic bacterial isolates were isolated and assayed for Avicelase production using UntSCB and TSCB. Only one isolate selected as most potent and identified as G. stearothermophilus used in this study. A specific endo-β-1,4-D-glucanase (Avicelase EC 3.2.1.91) was partially purified from a thermophilic bacterial strain was isolated from different soil samples when grown on cellulose enrichment SCB substrate as the sole carbon source. Results shown that G. stearothermophilus was the better Avicelase producer strain. Avicelase had an optimum pH and temperature 7.0 and 50ºC for both UntSCB and TSCB and exhibited good pH stability between "5-8" and "4-9", however, good temperature stability between (30-80ºC) for UntSCB and TSCB, respectively. Other factors affecting the production of Avicelase were compared (i.e. SCB concentration, inoculum size and different incubation periods), all results observed and obtained were revealed that the TSCB was exhibited maximal enzyme activity in comparison with the results obtained from UntSCB, so, the TSCB was enhancing the Avicelase production.

Mucus Secretion Responses to Various Sublethal Copper (II) Concentrations in the Mussel Perna perna

The purpose of this study was to evaluate the use of mucus production as a biomarker. This was done by exposing the mussel Perna perna to various sublethal concentrations of Cu. Mussels are effective as a bioindicator species as they accumulate Cu in their tissues. Differences in mucus production rates were evaluated at different Cu concentrations. The findings of this study indicate that increasing Cu concentrations had a significant effect on the mucus production rates over a 24 hour exposure. There were also significant differences between the mucus production rates at different Cu concentrations (p < 0.05). Thus, mucus is an essential detoxification mechanism.

The Potential of Natural Waste (Corn Husk) for Production of Environmental Friendly Biodegradable Film for Seedling

The use of plastic materials in agriculture causes serious hazards to the environment. The introduction of biodegradable materials, which can be disposed directly into the soil can be one possible solution to this problem. In the present research results of experimental tests carried out on biodegradable film fabricated from natural waste (corn husk) are presented. The film was characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), thermal gravimetric analysis (TGA) and atomic force microscope (AFM) observation. The film is shown to be readily degraded within 7-9 months under controlled soil conditions, indicating a high biodegradability rate. The film fabricated was use to produce biodegradable pot (BioPot) for seedlings plantation. The introduction and the expanding use of biodegradable materials represent a really promising alternative for enhancing sustainable and environmentally friendly agricultural activities.

Fermentative Production and Characterization of Carboxymethyl Bacterial Cellulose Using Date Syrup

In this study, static batch fermentation was used for bacterial cellulose production in date syrup solution (Bx. 10%) at 28°C using Gluconacetobacter. xylinus (PTCC 1734). The physicochemical properties of standard Sigma CMC and the produced carboxymethyl bacterial cellulose (CMBC) were studied using FT-IR spectroscopy, X-ray diffractometry (XRD) and Scanning Electron Microscopy (SEM). According to the FT-IR spectra the bands at 1664 and 1431 cm-1 indicate that carboxylic acid groups and carboxylate groups exist on the surface. The SEM imaging of CMBC and CMC carried out in magnification of 1K. Comparing the SEM imaging obviously showed that the ribbon shape in CMC remained but the length of ribbons became shorter while that shape changed to flake shape for CMBC. Determination of the area under XRD patterns demonstrated that the crystallinity amount of CMC was more than that for CMBC (51.08% and 81.84% for CMBC and CMC, respectively).

Wind Energy Development in the African Great Lakes Region to Supplement the Hydroelectricity in the Locality: A Case Study from Tanzania

The African Great Lakes Region refers to the zone around lakes Victoria, Tanganyika, Albert, Edward, Kivu, and Malawi. The main source of electricity in this region is hydropower whose systems are generally characterized by relatively weak, isolated power schemes, poor maintenance and technical deficiencies with limited electricity infrastructures. Most of the hydro sources are rain fed, and as such there is normally a deficiency of water during the dry seasons and extended droughts. In such calamities fossil fuels sources, in particular petroleum products and natural gas, are normally used to rescue the situation but apart from them being nonrenewable, they also release huge amount of green house gases to our environment which in turn accelerates the global warming that has at present reached an amazing stage. Wind power is ample, renewable, widely distributed, clean, and free energy source that does not consume or pollute water. Wind generated electricity is one of the most practical and commercially viable option for grid quality and utility scale electricity production. However, the main shortcoming associated with electric wind power generation is fluctuation in its output both in space and time. Before making a decision to establish a wind park at a site, the wind speed features there should therefore be known thoroughly as well as local demand or transmission capacity. The main objective of this paper is to utilise monthly average wind speed data collected from one prospective site within the African Great Lakes Region to demonstrate that the available wind power there is high enough to generate electricity. The mean monthly values were calculated from records gathered on hourly basis for a period of 5 years (2001 to 2005) from a site in Tanzania. The documentations that were collected at a height of 2 m were projected to a height of 50 m which is the standard hub height of wind turbines. The overall monthly average wind speed was found to be 12.11 m/s whereas June to November was established to be the windy season as the wind speed during the session is above the overall monthly wind speed. The available wind power density corresponding to the overall mean monthly wind speed was evaluated to be 1072 W/m2, a potential that is worthwhile harvesting for the purpose of electric generation.

Optimization of the Nutrient Supplients for Cellulase Production with the Basal Medium Palm Oil Mill Effluent

A statistical optimization was studied to design a media composition to produce optimum cellulolytic enzyme where palm oil mill effluent (POME) as a basal medium and filamentous fungus, Trichoderma reesei RUT-C30 were used in the liquid state bioconversion(LSB). 2% (w/v) total suspended solid, TSS, of the POME supplemented with 1% (w/v) cellulose, 0.5%(w/v) peptone and 0.02% (v/v) Tween 80 was estimated to produce the optimum CMCase activity of 18.53 U/ml through the statistical analysis followed by the faced centered central composite design(FCCCD). The probability values of cellulose (

Measuring Risk Levels and Efficacy of Risk Management Strategies in Vietnamese Catfish Farming

Although the Vietnamese catfish farming has grown at very high rates in recent years, the industry has also faced many problems affecting its sustainability. This paper studies the perceptions of catfish farmers regarding risk and risk management strategies in their production activities. Specifically, the study aims to measure the consequences, likelihoods, and levels of risks as well as the efficacy of risk management in Vietnamese catfish farming. Data for the study were collected through a sample of 261 catfish farmers in the Mekong Delta, Vietnam using a questionnaire survey in 2008. Results show that, in general, price and production risks were perceived as the most important risks. Farm management and technical measures were perceived more effective than other kinds of risk management strategies in risk reduction. Although price risks were rated as important risks, price risk management strategies were not perceived as important measures for risk mitigation. The results of the study are discussed to provide implications for various industry stakeholders, including policy makers, processors, advisors, and developers of new risk management strategies.

Effects of Human Factors on Workforce Scheduling

In today-s competitive market, most companies develop manufacturing systems that can help in cost reduction and maximum quality. Human issues are an important part of manufacturing systems, yet most companies ignore their effects on production performance. This paper aims to developing an integrated workforce planning system that incorporates the human being. Therefore, a multi-objective mixed integer nonlinear programming model is developed to determine the amount of hiring, firing, training, overtime for each worker type. This paper considers a workforce planning model including human aspects such as skills, training, workers- personalities, capacity, motivation, and learning rates. This model helps to minimize the hiring, firing, training and overtime costs, and maximize the workers- performance. The results indicate that the workers- differences should be considered in workforce scheduling to generate realistic plans with minimum costs. This paper also investigates the effects of human learning rates on the performance of the production systems.

Improving Water Productivity of Chickpea by the Use of Deficit Irrigation with Treated Domestic Wastewater

An experiment was performed in the south of Morocco in order to evaluate the effect of deficit irrigation by treated wastewater on chickpea production. We applied six irrigation treatments on a local variety of chickpea by supplying alternatively 50 or 100% of ETm in a completely randomized design. We found a highly significant difference between treatments in terms of biomass production. Drought stress during the vegetative period showed highest yield with 6.5 t/ha which was more than the yield obtained for the control (4.9 t/ha). The optimal crop stage in which deficit irrigation can be applied is the vegetative growth stage, as the crop has a chance to develop its root system, to be able to cover the plant needs for water and nutrient supply during the rest of cycle, and non stress conditions during the flowering and seed filling stages allow the plant to optimize its photosynthesis and carbon translocation, therefore increase its productivity.

Land Reclamation Using Waste as Fill Material: A Case Study in Jakarta

To coop with urbanization issues and the economic need for expansion, the city of Jakarta is planning to reclaim more land in the Jakarta Bay. However, the reclamation activities of some islands have barely started and already the developers are facing difficulties in finding sufficient quantities of sand as fill material. When addressing the problem of sand scarcity in the case of Jakarta where, an excess of waste production, an inadequate solid waste management system and a lack of dumping ground pose a major problem, it is hard not to think of the use of waste as alternative fill material. This paper analyses the possibilities of using waste in the land reclamation projects, considering the governmental, social, environmental and economic context of the city. The results identify types of waste that could be used, ways of using those types of waste and implementation conditions for the city of Jakarta.

Microwave Dehydration Behavior of Admontite Mineral at 360W

Dehydration behavior gives a hint about thermal properties of materials. It is important for the usage areas and transportation of minerals. Magnesium borates can be used as additive materials in areas such as in the production of superconducting materials, in the composition of detergents, due to the content of boron in the friction-reducing additives in oils and insulating coating compositions due to their good mechanic and thermal properties. In this study, thermal dehydration behavior of admontite (MgO(B2O3)3.7(H2O)), which is a kind of magnesium borate mineral, is experimented by microwave energy at 360W. Structure of admontite is suitable for the investigation of dehydration behavior by microwave because of its seven moles of crystal water. It is seen that admontite lost its 28.7% of weight at the end of the 120 minutes heating in microwave furnace. 

The Effect of Waste Magnesium to Boric Acid Ratio in Hydrothermal Magnesium Borate Synthesis at 70oC

Magnesium wastes are produced by many industrial activities. This waste problem is becoming a future problem for the world. Magnesium borates have many advantages such as; high corrosion resistance, heat resistance, high coefficient of elasticity and can also be used in the production of material against radiation. Addition, magnesium borates have great potential in sectors including ceramic and detergents industry and superconducting materials. In this study, using the starting materials of waste magnesium and H3BO3 the hydrothermal method was applied at a moderate temperature of 70oC. Several mole ratios of waste magnesium to H3BO3 are selected as; 1:2, 1:4, 1:6, 1:8, 1:10. Reaction time was determined as 1 hour. After the synthesis, X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) techniques are applied to products. As a result the forms of mcallisterite “Mg2(B6O7(OH)6)2.9(H2O)”, admontite “MgO(B2O3)3.7(H2O)” and magnesium boron hydrate (MgO(B2O3)3.6(H2O)” are obtained. 

Women Entrepreneurship and Problems in Turkey

Together with the industrialization, women began to be included in business life by peeling off of the tasks given them by society and they have become a factor of production creating value in economic and social sense. Thus, women have taken place in the labor market, majority of which has been formed by men. In this study, the experiences of women entrepreneurs, who succeed in business activities, will be analyzed. By the study, current state of the women entrepreneurs in the labor market of Turkey will be put down, as a result of interferences obtained from the shared experiences of women entrepreneurs. Findings obtained at the end of the study are thought to light the way of future studies for increasing women entrepreneurship.

Optimization of Structure of Section-Based Automated Lines

Automated production lines with so called 'hard structures' are widely used in manufacturing. Designers segmented these lines into sections by placing a buffer between the series of machine tools to increase productivity. In real production condition the capacity of a buffer system is limited and real production line can compensate only some part of the productivity losses of an automated line. The productivity of such production lines cannot be readily determined. This paper presents mathematical approach to solving the structure of section-based automated production lines by criterion of maximum productivity.

Fractal Shapes Description with Parametric L-systems and Turtle Algebra

In this paper, we propose a new method to describe fractal shapes using parametric l-systems. First we introduce scaling factors in the production rules of the parametric l-systems grammars. Then we decorticate these grammars with scaling factors using turtle algebra to show the mathematical relation between l-systems and iterated function systems (IFS). We demonstrate that with specific values of the scaling factors, we find the exact relationship established by Prusinkiewicz and Hammel between l-systems and IFS.

Dynamically Monitoring Production Methods for Identifying Structural Changes relevant to Logistics

Due to the growing dynamic and complexity within the market environment production enterprises in particular are faced with new logistic challenges. Moreover, it is here in this dynamic environment that the Logistic Operating Curve Theory also reaches its limits as a method for describing the correlations between the logistic objectives. In order to convert this theory into a method for dynamically monitoring productions this paper will introduce methods for reliably and quickly identifying structural changes relevant to logistics.

The Potential of Strain M Protease in Degradations of Protein in Natural Rubber Latex

Strain M was isolated from the latex of Hevea brasiliensis that grow in the rubber farm area of Malaysia Rubber Board. Strain M was tentatively identified as Bacillus sp. Strain M demonstrated high protease production at pH 9, and this was suitable to be applied in rubber processing that was in alkaline conditions. The right and suitable proportion to be used in applying supernatant into the latex was two parts of latex and one part of enzyme. In this proportion, the latex was stable throughout the 72 hours of treatment. The potential of strain M to degrade protein in the natural rubber latex was proven with the reduction of 79.3% nitrogen in 24 hours treatment. Centrifugation process of the latex before undergoing the treatment had increased the protein degradation in latex. Although the centrifugation process did not achieve zero nitrogen content, it had improved the performance of protein denaturing in the natural rubber.

Features of the Immune Response in Mice were Immunized with Polio Vaccine in Combination with Chitosan Preparations as Adjuvants

The study of cytokine expression in mice under the influence of inactivated poliovirus and Imovaks polio vaccine in combination with derivatives of chitosan shows various kinds of processes. There is a significant increase in IL-12 in the serum of immunized animals, which should stimulate the production of IFN-γ NK-cells and T-cells and polarize the immune response to Th1 type. Thus, the derivatives of chitosan can promote cell component of the immune response, providing a full antiviral immunity.

Heat-treated or Raw Sunflower Seeds in Lactating Dairy Cows Diets: Effects on Milk Fatty Acids Profile and Milk Production

The objective of this study was to investigate the effects of dietary supplementation with raw or heat-treated sunflower oil seed with two levels of 7.5% or 15% on unsaturated fatty acids in milk fat and performances of high-yielding lactating cows. Twenty early lactating Holstein cows were used in a complete randomized design. Treatments included: 1) CON, control (without sunflower oil seed). 2) LS-UT, 7.5% raw sunflower oil seed. 3) LS-HT, 7.5% heat-treated sunflower oil seed. 4) HS-UT, 15% raw sunflower oil seed. 5) HS-HT, 15% heat-treated sunflower oil seed. Experimental period lasted for 4 wk, with first 2 wk used for adaptation to the diets. Supplementation with 7.5% raw sunflower seed (LS-UT) tended to decrease milk yield, with 28.37 kg/d compared with the control (34.75 kg/d). Milk fat percentage was increased with the HS-UT treatment that obtained 3.71% compared with CON that was 3.39% and without significant different. Milk protein percent was decreased high level sunflower oil seed treatments (15%) with 3.18% whereas CON treatment is caused 3.40% protein. The cows fed added low sunflower heat-treated (LS-HT) produced milk with the highest content of total unsaturated fatty acid with 32.59 g/100g of milk fat compared with the HS-UT with 23.59 g/100g of milk fat. Content of C18 unsaturated fatty acids in milk fat increased from 21.68 g/100g of fat in the HS-UT to 22.50, 23.98, 27.39 and 30.30 g/100g of fat from the cow fed HS-HT, CON, LS-UT and LS-HT treatments, respectively. C18:2 isomers of fatty acid in milk were greater by LSHT supplementation with significant effect (P < 0.05). Total of C18 unsaturated fatty acids content was significantly higher in milk of animal fed added low heat-treated sunflower (7.5%) than those fed with high sunflower. In all, results of this study showed that diet cow's supplementation with sunflower oil seed tended to reduce milk production of lactating cows but can improve C18 UFA (Unsaturated Fatty Acid) content in milk fat. 7.5% level of sunflower oil seed that heated seemed to be the optimal source to increase UFA production.

Production of Milk Clotting Protease by Rhizopus Stolonifer through Optimization of Culture Conditions

The present study describes the biosynthesis of a milkclotting protease by solid state fermentation (SSF) of a locally isolated mould, Rhizopus stolonifer. The production medium was prepared using wheat bran at 50% (w/v). The production conditions are optimized by varying 7 parameters: carbon and nitrogen sources, medium moisture, temperature, pH, fermentation time and inoculum-s size. The maximum enzyme synthesis was measured after 96 h of incubation time at temperature of 28°C. The optimum pH determined was 6 and the inoculum size was 3.106spores/ml. The optimum initial moisture content is comprised between 50 to 70%. The formation of milk clotting protease is enhanced when galactose and peptone are used at 10% (w/v) and 1% (w/v) concentrations respectively. The maximum production of milk clotting protease is 120 US/ml.