Introduction of Hyperaccumulator Plants with Phytoremediation Potential of a Lead- Zinc Mine in Iran

Contamination of heavy metals represents one of the most pressing threats to water and soil resources as well as human health. Phytoremediation can be potentially used to remediate metalcontaminated sites. A major step towards the development of phytoremediation of heavy metal impacted soils is the discovery of the heavy metal hyperaccumulation in plants. In this study, the several established criteria to define a hyperaccumulator plant were applied. The case study was represented by a mining area in Hamedan province in the central west part of Iran. Obtained results showed that the most of sampled species were able to grow on heavily metal-contaminated soils and also were able to accumulate extraordinarily high concentrations of some metals such as Zn, Mn, Cu, Pb and Fe. Using the most common criteria, Euphorbia macroclada and Centaurea virgata can be classified as hyperaccumulators of some measured heavy metals and, therefore, they have suitable potential for phytoremediation of contaminated soils.

A Cumulative Learning Approach to Data Mining Employing Censored Production Rules (CPRs)

Knowledge is indispensable but voluminous knowledge becomes a bottleneck for efficient processing. A great challenge for data mining activity is the generation of large number of potential rules as a result of mining process. In fact sometimes result size is comparable to the original data. Traditional data mining pruning activities such as support do not sufficiently reduce the huge rule space. Moreover, many practical applications are characterized by continual change of data and knowledge, thereby making knowledge voluminous with each change. The most predominant representation of the discovered knowledge is the standard Production Rules (PRs) in the form If P Then D. Michalski & Winston proposed Censored Production Rules (CPRs), as an extension of production rules, that exhibit variable precision and supports an efficient mechanism for handling exceptions. A CPR is an augmented production rule of the form: If P Then D Unless C, where C (Censor) is an exception to the rule. Such rules are employed in situations in which the conditional statement 'If P Then D' holds frequently and the assertion C holds rarely. By using a rule of this type we are free to ignore the exception conditions, when the resources needed to establish its presence, are tight or there is simply no information available as to whether it holds or not. Thus the 'If P Then D' part of the CPR expresses important information while the Unless C part acts only as a switch changes the polarity of D to ~D. In this paper a scheme based on Dempster-Shafer Theory (DST) interpretation of a CPR is suggested for discovering CPRs from the discovered flat PRs. The discovery of CPRs from flat rules would result in considerable reduction of the already discovered rules. The proposed scheme incrementally incorporates new knowledge and also reduces the size of knowledge base considerably with each episode. Examples are given to demonstrate the behaviour of the proposed scheme. The suggested cumulative learning scheme would be useful in mining data streams.

Middle East towards Incubator Benefits: Case Studies

In the context of business incubation (BI) as strategic enablers, this paper critically reviews the literature relating to the strategic benefits of BI in the Middle East. The taxonomy of BI benefits in the strategic elements on 1) type, 2) financial model, 3) services, 4) objectives, 5) number of clients, 6) number of graduates, and 7) jobs creation. Understanding the importance of BI benefits can be significant in the economic development although most incubators lead to diversify the economy. Thus, taxonomies of the benefits of BI are produced from both the academic literature and published case studies. In this way, a classification of strategic benefits elements as they relate to incubators has been developed to provide a greater understanding of the benefits needed to obtain a specific element. The result of this paper is Business incubators is aimed entrepreneurship, jobs creation, research commercialization and profitable enterprises in Middle Eastern countries.

Analytical Studies on Volume Determination of Leg Ulcer using Structured Light and Laser Triangulation Data Acquisition Techniques

Imaging is defined as the process of obtaining geometric images either two dimensional or three dimensional by scanning or digitizing the existing objects or products. In this research, it applied to retrieve 3D information of the human skin surface in medical application. This research focuses on analyzing and determining volume of leg ulcers using imaging devices. Volume determination is one of the important criteria in clinical assessment of leg ulcer. The volume and size of the leg ulcer wound will give the indication on responding to treatment whether healing or worsening. Different imaging techniques are expected to give different result (and accuracies) in generating data and images. Midpoint projection algorithm was used to reconstruct the cavity to solid model and compute the volume. Misinterpretation of the results can affect the treatment efficacy. The objectives of this paper is to compare the accuracy between two 3D data acquisition method, which is laser triangulation and structured light methods, It was shown that using models with known volume, that structured-light-based 3D technique produces better accuracy compared with laser triangulation data acquisition method for leg ulcer volume determination.

Fenton’s Oxidation as Post-Treatment of a Mature Municipal Landfill Leachate

Mature landfill leachates contain some macromolecular organic substances that are resistant to biological degradation. Recently, Fenton-s oxidation has been investigated for chemical treatment or pre-treatment of mature landfill leachates. The aim of this study was to reduce the recalcitrant organic load still remaining after the complete treatment of a mature landfill leachate by Fenton-s oxidation post-treatment. The effect of various parameters such as H2O2 to Fe2+ molar ratio, dosage of Fe2+ reagent, initial pH, reaction time and initial chemical oxygen demand (COD) strength, that have an important role on the oxidation, was analysed. A molar ratio H2O2/Fe2+ = 3, a Fe2+ dosage of 4 mmol·L-1, pH 3, and a reaction time of 40 min were found to achieve better oxidation performances. At these favorable conditions, COD removal efficiency was 60.9% and 31.1% for initial COD of 93 and 743 mg·L-1 respectively (diluted and non diluted leachate). Fenton-s oxidation also presented good results for color removal. In spite of being extremely difficult to treat this leachate, the above results seem rather encouraging on the application of Fenton-s oxidation.

Qualitative Possibilistic Influence Diagrams

Influence diagrams (IDs) are one of the most commonly used graphical decision models for reasoning under uncertainty. The quantification of IDs which consists in defining conditional probabilities for chance nodes and utility functions for value nodes is not always obvious. In fact, decision makers cannot always provide exact numerical values and in some cases, it is more easier for them to specify qualitative preference orders. This work proposes an adaptation of standard IDs to the qualitative framework based on possibility theory.

An Experimental Study and Influence of BHF and Die Radius in Deep Drawing Process on the Springback

A lot of research made during these last 15 years showed that the quantification of the springback has a significant role in the industry of sheet metal forming. These studies were made with the objective of finding techniques and methods to minimize or completely avoid this permanent physical variation. Moreover, the use of steel and aluminum alloys in the car industry and aviation poses every day the problem of the springback. The determination in advance of the quantity of the springback allows consequently the design and manufacture of the tool. The aim of this paper is to study experimentally the influence of the blank holder force BHF and the radius of curvature of the die on the springback and their influence on the strain in various zone of specimen. The original of our purpose consist on tests which are ensured by adapting a U-type stretching-bending device on a tensile testing machine, where we studied and quantified the variation of the springback according to displacement.

Control of Pendulum on a Cart with State Dependent Riccati Equations

State Dependent Riccati Equation (SDRE) approach is a modification of the well studied LQR method. It has the capability of being applied to control nonlinear systems. In this paper the technique has been applied to control the single inverted pendulum (SIP) which represents a rich class of nonlinear underactuated systems. SIP modeling is based on Euler-Lagrange equations. A procedure is developed for judicious selection of weighting parameters and constraint handling. The controller designed by SDRE technique here gives better results than existing controllers designed by energy based techniques.

A Study of Relationship between WBGT and Relative Humidity to Worker Performance

The environmental factors such as temperature and relative humidity are very contribute to the effect of comfort, health, performance and worker productivity. To ensure an ergonomics work environment, it is possible to require a specific attention especially in industries. The aim of this study is to show the effect of temperature and relative humidity on worker productivity in automotive industry by taking a workstation in an automotive plant as the location to conduct the study. From the analysis of the data, there were relationship between temperature and relative humidity on worker productivity. Mathematical equation to represent the relationship between temperatures and relative humidity on the production rate is modelled. From the equation model, the production rate for the workstation can be predicted base on the value of temperature and relative humidity.

Integrated Use of Animal Manure and Inorganic Fertilizer on Growth and Yield of Vegetable Cowpea (Vigna uniquiculata)

Field experiment was conducted to investigate the combine use of animal manure and inorganic fertilizer on growth and yield performance of vegetable cowpea. The experiment was laid out in a Randomized Complete Block Design (RCBD) with seven treatments. Poultry manure, cattle manure and goat manure were evaluated with recommended level of inorganic fertilizer for vegetable cowpea. The highest crop yield was obtained by the application of poultry manure combined with the recommended level of inorganic fertilizer. The lowest yield was obtained by the application of goat manure only. In addition, the results revealed that the goat manure and cattle manure were inferior to poultry manure as a source of organic manure for vegetable cowpea cultivation. The animal manure combine with chemical fertilizer gave a higher yield when compared to the sole application of animal manure. The soil analysis showed that the nitrogen content and phosphorus content of poultry manure treated plots were higher than other treatments tested. But potassium content was higher in goat manure treated plots. The results further revealed that the poultry manure has a beneficial effect on crop growth and yield compared with other treatments. Therefore, the combined use of poultry manure with inorganic fertilizer application has been recognized as the most suitable way of ensuring high crop yield.

New Algorithms for Finding Short Reset Sequences in Synchronizing Automata

Finding synchronizing sequences for the finite automata is a very important problem in many practical applications (part orienters in industry, reset problem in biocomputing theory, network issues etc). Problem of finding the shortest synchronizing sequence is NP-hard, so polynomial algorithms probably can work only as heuristic ones. In this paper we propose two versions of polynomial algorithms which work better than well-known Eppstein-s Greedy and Cycle algorithms.

The Application of Adaptive Tabu Search Algorithm and Averaging Model to the Optimal Controller Design of Buck Converters

The paper presents the applications of artificial intelligence technique called adaptive tabu search to design the controller of a buck converter. The averaging model derived from the DQ and generalized state-space averaging methods is applied to simulate the system during a searching process. The simulations using such averaging model require the faster computational time compared with that of the full topology model from the software packages. The reported model is suitable for the work in the paper in which the repeating calculation is needed for searching the best solution. The results will show that the proposed design technique can provide the better output waveforms compared with those designed from the classical method.

A Study of the Built Environment Design Elements Embedded into the Multiple Criteria Strategic Planning Model for an Urban Renewal

The link between urban planning and design principles and the built environment of an urban renewal area is of interest to the field of urban studies. During the past decade, there has also been increasing interest in urban planning and design; this interest is motivated by the possibility that design policies associated with the built environment can be used to control, manage, and shape individual activity and behavior. However, direct assessments and design techniques of the links between how urban planning design policies influence individuals are still rare in the field. Recent research efforts in urban design have focused on the idea that land use and design policies can be used to increase the quality of design projects for an urban renewal area-s built environment. The development of appropriate design techniques for the built environment is an essential element of this research. Quality function deployment (QFD) is a powerful tool for improving alternative urban design and quality for urban renewal areas, and for procuring a citizen-driven quality system. In this research, we propose an integrated framework based on QFD and an Analytic Network Process (ANP) approach to determine the Alternative Technical Requirements (ATRs) to be considered in designing an urban renewal planning and design alternative. We also identify the research designs and methodologies that can be used to evaluate the performance of urban built environment projects. An application in an urban renewal built environment planning and design project evaluation is presented to illustrate the proposed framework.

3D Dense Correspondence for 3D Dense Morphable Face Shape Model

Realistic 3D face model is desired in various applications such as face recognition, games, avatars, animations, and etc. Construction of 3D face model is composed of 1) building a face shape model and 2) rendering the face shape model. Thus, building a realistic 3D face shape model is an essential step for realistic 3D face model. Recently, 3D morphable model is successfully introduced to deal with the various human face shapes. 3D dense correspondence problem should be precedently resolved for constructing a realistic 3D dense morphable face shape model. Several approaches to 3D dense correspondence problem in 3D face modeling have been proposed previously, and among them optical flow based algorithms and TPS (Thin Plate Spline) based algorithms are representative. Optical flow based algorithms require texture information of faces, which is sensitive to variation of illumination. In TPS based algorithms proposed so far, TPS process is performed on the 2D projection representation in cylindrical coordinates of the 3D face data, not directly on the 3D face data and thus errors due to distortion in data during 2D TPS process may be inevitable. In this paper, we propose a new 3D dense correspondence algorithm for 3D dense morphable face shape modeling. The proposed algorithm does not need texture information and applies TPS directly on 3D face data. Through construction procedures, it is observed that the proposed algorithm constructs realistic 3D face morphable model reliably and fast.

The Relationship of Building Information Modeling (BIM) Capability in Quantity Surveying Practice and Project Performance

The adoption of building information modeling (BIM) is increasing in the construction industry. However, quantity surveyors are slow in adoption compared to other professions due to lack of awareness of the BIM’s potential in their profession. It is still unclear on how BIM application can enhance quantity surveyors’ work performance and project performance. The aim of this research is to identify the capabilities of BIM in quantity surveying practices and examine the relationship between BIM capabilities and project performance. Questionnaire survey and interviews were adopted for data collection. Literature reviews identified there are eleven BIM capabilities in quantity surveying practice. Questionnaire results showed that there are several BIM capabilities significantly correlated with project performance in time, cost and quality aspects and the results were validated through interviews. These findings show that BIM has the capabilities to enhance quantity surveyors’ performances and subsequently improved project performance.

Production of H5N1 Hemagglutinin inTrichoplusia ni Larvae by a Novel Bi-cistronic Baculovirus Expression Vector

Highly pathogenic avian influenza (HPAI) H5N1 viruses have created demand for a cost-effective vaccine to prevent a pandemic of the disease. Here, we report that Trichoplusia ni (T. ni) larvae can act as a cost-effective bioreactor to produce recombinant HA5 (rH5HA) proteins as an potential effective vaccine for chickens. To facilitate the recombinant virus identification, virus titer determination and access the infected larvae, we employed the internal ribosome entry site (IRES) derived from Perina nuda virus (PnV, belongs to insect picorna like Iflavirus genus) to construct a bi-cistronic baculovirus expression vector that can express the rH5HA protein and enhanced green fluorescent protein (EGFP) simultaneously. Western blot analysis revealed that the 70 kDa rH5HA protein and partially cleaved products (40 kDa H5HA1) were generated in T. ni larvae infected with recombinant baculovirus carrying the H5HA gene. These data suggest that the baculovirus-larvae recombinant protein expression system could be a cost-effective platform for H5N1 vaccine production.

Effect of FES Cycling Training on Spasticity in Spinal Cord Injured Subjects

Training with Functional Electrical Stimulation (FES) has both physiological and psychological benefits for spinal cord injured subjects. Commonly used methods for quantification of spasticity have shown controversial reliability. In this study we propose a method for quick determination of spasticity in spinal cord injured subjects on a cycling and measurement system. 23 patients did training sessions on an instrumented mobile FES cycle three times a week over two months as part of their clinical rehabilitation program. Spasticity (MAS) and the legs resistance to the pedaling motion were assessed before and after the FES training and measurements were done on the subjects ability to pedal with our without motor assistance. Measurements with test persons with incomplete spastic paraplegia have shown that spasticity is decreased after a 30 min cycling training with functional electrical stimulation (FES).

The Study on the Wireless Power Transfer System for Mobile Robots

A wireless power transfer system can attribute to the fields in robot, aviation and space in which lightening the weight of device and improving the movement play an important role. A wireless power transfer system was investigated to overcome the inconvenience of using power cable. Especially a wireless power transfer technology is important element for mobile robots. We proposed the wireless power transfer system of the half-bridge resonant converter with the frequency tracking and optimized power transfer control unit. And the possibility of the application and development system was verified through the experiment with LED loads.

Design Based Performance Prediction of Component Based Software Products

Component-Based software engineering provides an opportunity for better quality and increased productivity in software development by using reusable software components [10]. One of the most critical aspects of the quality of a software system is its performance. The systematic application of software performance engineering techniques throughout the development process can help to identify design alternatives that preserve desirable qualities such as extensibility and reusability while meeting performance objectives [1]. In the present scenario, software engineering methodologies strongly focus on the functionality of the system, while applying a “fix- it-later" approach to software performance aspects [3]. As a result, lengthy fine-tunings, expensive extra hard ware, or even redesigns are necessary for the system to meet the performance requirements. In this paper, we propose design based, implementation independent, performance prediction approach to reduce the overhead associated in the later phases while developing a performance guaranteed software product with the help of Unified Modeling Language (UML).

Dynamics and Feedback Control for a New Hyperchaotic System

In this paper, stability and Hopf bifurcation analysis of a novel hyperchaotic system are investigated. Four feedback control strategies, the linear feedback control method, enhancing feedback control method, speed feedback control method and delayed feedback control method, are used to control the hyperchaotic attractor to unstable equilibrium. Moreover numerical simulations are given to verify the theoretical results.