Effect of Miniature Cracks on the Fracture Strength and Strain of Tensile Armour Wires

Tensile armour wires provide a flexible pipe's resistance to longitudinal stresses. Flexible pipe manufacturers need to know the effect of defects such as scratches and cracks, with dimensions less than 0.2mm which is the limit of the current nondestructive detection technology, on the fracture stress and fracture strain of the wire for quality assurance purposes. Recent research involving the determination of the fracture strength of cracked wires employed laboratory testing and classical fracture mechanics approach using non-standardised fracture mechanics specimens because standard test specimens could not be manufactured from the wires owing to their sizes. In this work, the effect of miniature cracks on the fracture properties of tensile armour wires was investigated using laboratory and finite element tensile testing simulations with the phenomenological shear fracture model. The investigation revealed that the presence of cracks shallower than 0.2mm is worse on the fracture strain of the wire.

Promoting Mathematical Understanding Using ICT in Teaching and Learning

Information and Communication Technologies (ICT) in mathematical education is a very active field of research and innovation, where learning is understood to be meaningful and grasping multiple linked representation rather than rote memorization, a great amount of literature offering a wide range of theories, learning approaches, methodologies and interpretations, are generally stressing the potentialities for teaching and learning using ICT. Despite the utilization of new learning approaches with ICT, students experience difficulties in learning concepts relevant to understanding mathematics, much remains unclear about the relationship between the computer environment, the activities it might support, and the knowledge that might emerge from such activities. Many questions that might arise in this regard: to what extent does the use of ICT help students in the process of understanding and solving tasks or problems? Is it possible to identify what aspects or features of students' mathematical learning can be enhanced by the use of technology? This paper will highlight the interest of the integration of information and communication technologies (ICT) into the teaching and learning of mathematics (quadratic functions), it aims to investigate the effect of four instructional methods on students- mathematical understanding and problem solving. Quantitative and qualitative methods are used to report about 43 students in middle school. Results showed that mathematical thinking and problem solving evolves as students engage with ICT activities and learn cooperatively.

Generalization Kernel for Geopotential Approximation by Harmonic Splines

This paper presents a generalization kernel for gravitational potential determination by harmonic splines. It was shown in [10] that the gravitational potential can be approximated using a kernel represented as a Newton integral over the real Earth body. On the other side, the theory of geopotential approximation by harmonic splines uses spherically oriented kernels. The purpose of this paper is to show that in the spherical case both kernels have the same type of representation, which leads us to conclusion that it is possible to consider the kernel represented as a Newton integral over the real Earth body as a kind of generalization of spherically harmonic kernels to real geometries.

Using Artificial Neural Network to Forecast Groundwater Depth in Union County Well

A concern that researchers usually face in different applications of Artificial Neural Network (ANN) is determination of the size of effective domain in time series. In this paper, trial and error method was used on groundwater depth time series to determine the size of effective domain in the series in an observation well in Union County, New Jersey, U.S. different domains of 20, 40, 60, 80, 100, and 120 preceding day were examined and the 80 days was considered as effective length of the domain. Data sets in different domains were fed to a Feed Forward Back Propagation ANN with one hidden layer and the groundwater depths were forecasted. Root Mean Square Error (RMSE) and the correlation factor (R2) of estimated and observed groundwater depths for all domains were determined. In general, groundwater depth forecast improved, as evidenced by lower RMSEs and higher R2s, when the domain length increased from 20 to 120. However, 80 days was selected as the effective domain because the improvement was less than 1% beyond that. Forecasted ground water depths utilizing measured daily data (set #1) and data averaged over the effective domain (set #2) were compared. It was postulated that more accurate nature of measured daily data was the reason for a better forecast with lower RMSE (0.1027 m compared to 0.255 m) in set #1. However, the size of input data in this set was 80 times the size of input data in set #2; a factor that may increase the computational effort unpredictably. It was concluded that 80 daily data may be successfully utilized to lower the size of input data sets considerably, while maintaining the effective information in the data set.

Corporate Environmentalism: A Case Study in the Czech Republic

This study examines perception of environmental approach in small and medium-sized enterprises (SMEs) – the process by which firms integrate environmental concern into business. Based on a review of the literature, the paper synthesizes focus on environmental issues with the reflection in a case study in the Czech Republic. Two themes of corporate environmentalism are discussed – corporate environmental orientation and corporate stances toward environmental concerns. It provides theoretical material on greening organizational culture that is helpful in understanding the response of contemporary business to environmental problems. We integrate theoretical predictions with empirical findings confronted with reality. Scales to measure these themes are tested in a survey of managers in 229 Czech firms. We used the process of in-depth questioning. The research question was derived and answered in the context of the corresponding literature and conducted research. A case study showed us that environmental approach is variety different (depending on the size of the firm) in SMEs sector. The results of the empirical mapping demonstrate Czech company’s approach to environment and define the problem areas and pinpoint the main limitation in the expansion of environmental aspects. We contribute to the debate for recognition of the particular role of environmental issues in business reality.

Transport and Fate of Copper in Soils

The presence of toxic heavy metals in industrial effluents is one of the serious threats to the environment. Heavy metals such as Cadmium, Chromium, Lead, Nickel, Zinc, Mercury, Copper, Arsenic are found in the effluents of industries such as foundries, electroplating, petrochemical, battery manufacturing, tanneries, fertilizer, dying, textiles, metallurgical and metal finishing. Tremendous increase of industrial copper usage and its presence in industrial effluents has lead to a growing concern about the fate and effects of Copper in the environment. Percolation of industrial effluents through soils leads to contamination of ground water and soils. The transport of heavy metals and their diffusion into the soils has therefore, drawn the attention of the researchers. In this study, an attempt has been made to delineate the mechanisms of transport and fate of copper in terrestrial environment. Column studies were conducted using perplex glass square column of dimension side 15 cm and 1.35 m long. The soil samples were collected from a natural drain near Mohali (India). The soil was characterized to be poorly graded sandy loam. The soil was compacted to the field dry density level of about 1.6 g/cm3. Break through curves for different depths of the column were plotted. The results of the column study indicated that the copper has high tendency to flow in the soils and fewer tendencies to get absorbed on the soil particles. The t1/2 estimates obtained from the studies can be used for design copper laden wastewater disposal systems.

A New Variant of RC4 Stream Cipher

RC4 was used as an encryption algorithm in WEP(Wired Equivalent Privacy) protocol that is a standardized for 802.11 wireless network. A few attacks followed, indicating certain weakness in the design. In this paper, we proposed a new variant of RC4 stream cipher. The new version of the cipher does not only appear to be more secure, but its keystream also has large period, large complexity and good statistical properties.

Real Power Generation Scheduling to Improve Steady State Stability Limit in the Java-Bali 500kV Interconnection Power System

This paper will discuss about an active power generator scheduling method in order to increase the limit level of steady state systems. Some power generator optimization methods such as Langrange, PLN (Indonesian electricity company) Operation, and the proposed Z-Thevenin-based method will be studied and compared in respect of their steady state aspects. A method proposed in this paper is built upon the thevenin equivalent impedance values between each load respected to each generator. The steady state stability index obtained with the REI DIMO method. This research will review the 500kV-Jawa-Bali interconnection system. The simulation results show that the proposed method has the highest limit level of steady state stability compared to other optimization techniques such as Lagrange, and PLN operation. Thus, the proposed method can be used to create the steady state stability limit of the system especially in the peak load condition.

Extraction of Symbolic Rules from Artificial Neural Networks

Although backpropagation ANNs generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions cannot be explained as those of decision trees. In many applications, it is desirable to extract knowledge from trained ANNs for the users to gain a better understanding of how the networks solve the problems. A new rule extraction algorithm, called rule extraction from artificial neural networks (REANN) is proposed and implemented to extract symbolic rules from ANNs. A standard three-layer feedforward ANN is the basis of the algorithm. A four-phase training algorithm is proposed for backpropagation learning. Explicitness of the extracted rules is supported by comparing them to the symbolic rules generated by other methods. Extracted rules are comparable with other methods in terms of number of rules, average number of conditions for a rule, and predictive accuracy. Extensive experimental studies on several benchmarks classification problems, such as breast cancer, iris, diabetes, and season classification problems, demonstrate the effectiveness of the proposed approach with good generalization ability.

Study of Features for Hand-printed Recognition

The feature extraction method(s) used to recognize hand-printed characters play an important role in ICR applications. In order to achieve high recognition rate for a recognition system, the choice of a feature that suits for the given script is certainly an important task. Even if a new feature required to be designed for a given script, it is essential to know the recognition ability of the existing features for that script. Devanagari script is being used in various Indian languages besides Hindi the mother tongue of majority of Indians. This research examines a variety of feature extraction approaches, which have been used in various ICR/OCR applications, in context to Devanagari hand-printed script. The study is conducted theoretically and experimentally on more that 10 feature extraction methods. The various feature extraction methods have been evaluated on Devanagari hand-printed database comprising more than 25000 characters belonging to 43 alphabets. The recognition ability of the features have been evaluated using three classifiers i.e. k-NN, MLP and SVM.

The Roles of Natural and Anthropogenic Factors of Ecological State in the Lake Peipsi

In this paper we discuss the problems of the long-term management policy of Lake Peipsi and the roles of natural and anthropogenic factors in the ecological state of the lake. The reduction of the pollution during the last 15 years could not give significant changes of the chemical composition of the water, what implicates the essential role that natural factors have on the ecological state of lake. One of the most important factors having impact on the hydrochemical cycles and ecological state is the hydrological regime which is clearly expressed in L. Peipsi. The absence on clear interrelations of climate cycles and nutrients suggest that complex abiotic and biotic interactions, which take place in the lake ecosystem, plays a significant role in the matter circulation mechanism within lake.

Evaluation of State of the Art IDS Message Exchange Protocols

During the last couple of years, the degree of dependence on IT systems has reached a dimension nobody imagined to be possible 10 years ago. The increased usage of mobile devices (e.g., smart phones), wireless sensor networks and embedded devices (Internet of Things) are only some examples of the dependency of modern societies on cyber space. At the same time, the complexity of IT applications, e.g., because of the increasing use of cloud computing, is rising continuously. Along with this, the threats to IT security have increased both quantitatively and qualitatively, as recent examples like STUXNET or the supposed cyber attack on Illinois water system are proofing impressively. Once isolated control systems are nowadays often publicly available - a fact that has never been intended by the developers. Threats to IT systems don’t care about areas of responsibility. Especially with regard to Cyber Warfare, IT threats are no longer limited to company or industry boundaries, administrative jurisdictions or state boundaries. One of the important countermeasures is increased cooperation among the participants especially in the field of Cyber Defence. Besides political and legal challenges, there are technical ones as well. A better, at least partially automated exchange of information is essential to (i) enable sophisticated situational awareness and to (ii) counter the attacker in a coordinated way. Therefore, this publication performs an evaluation of state of the art Intrusion Detection Message Exchange protocols in order to guarantee a secure information exchange between different entities.

Software Maintenance Severity Prediction for Object Oriented Systems

As the majority of faults are found in a few of its modules so there is a need to investigate the modules that are affected severely as compared to other modules and proper maintenance need to be done in time especially for the critical applications. As, Neural networks, which have been already applied in software engineering applications to build reliability growth models predict the gross change or reusability metrics. Neural networks are non-linear sophisticated modeling techniques that are able to model complex functions. Neural network techniques are used when exact nature of input and outputs is not known. A key feature is that they learn the relationship between input and output through training. In this present work, various Neural Network Based techniques are explored and comparative analysis is performed for the prediction of level of need of maintenance by predicting level severity of faults present in NASA-s public domain defect dataset. The comparison of different algorithms is made on the basis of Mean Absolute Error, Root Mean Square Error and Accuracy Values. It is concluded that Generalized Regression Networks is the best algorithm for classification of the software components into different level of severity of impact of the faults. The algorithm can be used to develop model that can be used for identifying modules that are heavily affected by the faults.

Application of Artificial Neural Networks for Temperature Forecasting

In this paper, the application of neural networks to study the design of short-term temperature forecasting (STTF) Systems for Kermanshah city, west of Iran was explored. One important architecture of neural networks named Multi-Layer Perceptron (MLP) to model STTF systems is used. Our study based on MLP was trained and tested using ten years (1996-2006) meteorological data. The results show that MLP network has the minimum forecasting error and can be considered as a good method to model the STTF systems.

Study on Guangzhou's Employment Subcentres and Polycentricity

Since the late 1980s, the new phenomena of 'employment subcentres' or 'polycentricity' has appeared in the metropolises of North American and Western Europe and it has been an interesting topic for academics and researchers. This paper specifically uses one case study-Guangzhou to explore the development and the mechanism of employment subcentres and polycentricity in Chinese metropolises by spatial analysis method on the basis of the first economic census data. In conclusion, the paper regards that the employment subcentres and polycentricity has existed in Chinese metropolises. And that, the mechanism of them is mainly from the secondary industry instead of the tertiary industry in North American and Western Europe

Multi-criteria Optimization of Square Beam using Linear Weighted Average Model

Increasing energy absorption is a significant parameter in vehicle design. Absorbing more energy results in decreasing occupant damage. Limitation of the deflection in a side impact results in decreased energy absorption (SEA) and increased peak load (PL). Hence a high crash force jeopardizes passenger safety and vehicle integrity. The aims of this paper are to determine suitable dimensions and material of a square beam subjected to side impact, in order to maximize SEA and minimize PL. To achieve this novel goal, the geometric parameters of a square beam are optimized using the response surface method (RSM).multi-objective optimization is performed, and the optimum design for different response features is obtained.

Impact of Government Spending on Private Consumption and on the Economy: Case of Thailand

The recent global financial problem urges government to play role in stimulating the economy due to the fact that private sector has little ability to purchase during the recession. A concerned question is whether the increased government spending crowds out private consumption and whether it helps stimulate the economy. If the government spending policy is effective; the private consumption is expected to increase and can compensate the recent extra government expense. In this study, the government spending is categorized into government consumption spending and government capital spending. The study firstly examines consumer consumption along the line with the demand function in microeconomic theory. Three categories of private consumption are used in the study. Those are food consumption, non food consumption, and services consumption. The dynamic Almost Ideal Demand System of the three categories of the private consumption is estimated using the Vector Error Correction Mechanism model. The estimated model indicates the substituting effects (negative impacts) of the government consumption spending on budget shares of private non food consumption and of the government capital spending on budget share of private food consumption, respectively. Nevertheless the result does not necessarily indicate whether the negative effects of changes in the budget shares of the non food and the food consumption means fallen total private consumption. Microeconomic consumer demand analysis clearly indicates changes in component structure of aggregate expenditure in the economy as a result of the government spending policy. The macroeconomic concept of aggregate demand comprising consumption, investment, government spending (the government consumption spending and the government capital spending), export, and import are used to estimate for their relationship using the Vector Error Correction Mechanism model. The macroeconomic study found no effect of the government capital spending on either the private consumption or the growth of GDP while the government consumption spending has negative effect on the growth of GDP. Therefore no crowding out effect of the government spending is found on the private consumption but it is ineffective and even inefficient expenditure as found reducing growth of the GDP in the context of Thailand.

Effect of Catalyst Preparation on the Performance of CaO-ZnO Catalysts for Transesterification

In this research, CaO-ZnO catalysts (with various Ca:Zn atomic ratios of 1:5, 1:3, 1:1, and 3:1) prepared by incipientwetness impregnation (IWI) and co-precipitation (CP) methods were used as a catalyst in the transesterification of palm oil with methanol for biodiesel production. The catalysts were characterized by several techniques, including BET method, CO2-TPD, and Hemmett Indicator. The effects of precursor concentration, and calcination temperature on the catalytic performance were studied under reaction conditions of a 15:1 methanol to oil molar ratio, 6 wt% catalyst, reaction temperature of 60°C, and reaction time of 8 h. At Ca:Zn atomic ratio of 1:3 gave the highest FAME value owing to a basic properties and surface area of the prepared catalyst.

Integrating Technology into Mathematics Education: A Case Study from Primary Mathematics Students Teachers

The purpose of the study is to determine the primary mathematics student teachers- views related to use instructional technology tools in course of the learning process and to reveal how the sample presentations towards different mathematical concepts affect their views. This is a qualitative study involving twelve mathematics students from a public university. The data gathered from two semi-structural interviews. The first one was realized in the beginning of the study. After that the representations prepared by the researchers were showed to the participants. These representations contain animations, Geometer-s Sketchpad activities, video-clips, spreadsheets, and power-point presentations. The last interview was realized at the end of these representations. The data from the interviews and content analyses were transcribed and read and reread to explore the major themes. Findings revealed that the views of the students changed in this process and they believed that the instructional technology tools should be used in their classroom.

The Comparation of Activation Nuclear Factor Kappa Beta (NFKB) at Rattus Novergicus Strain Wistar Induced by Various Duration High Fat Diet (HFD)

NFκB is a transcription factor regulating many function of the vessel wall. In the normal condition , NFκB is revealed diffuse cytoplasmic expressionsuggesting that the system is inactive. The presence of activation NFκB provide a potential pathway for the rapid transcriptional of a variety of genes encoding cytokines, growth factors, adhesion molecules and procoagulatory factors. It is likely to play an important role in chronic inflamatory disease involved atherosclerosis. There are many stimuli with the potential to active NFκB, including hyperlipidemia. We used 24 mice which was divided in 6 groups. The HFD given by et libitum procedure during 2, 4, and 6 months. The parameters in this study were the amount of NFKB activation ,H2O2 as ROS and VCAM-1 as a product of NFKB activation. H2O2 colorimetryc assay performed directly using Anti Rat H2O2 ELISA Kit. The NFKB and VCAM-1 detection obtained from aorta mice, measured by ELISA kit and imunohistochemistry. There was a significant difference activation of H2O2, NFKB and VCAM-1 level at induce HFD after 2, 4 and 6 months. It suggest that HFD induce ROS formation and increase the activation of NFKB as one of atherosclerosis marker that caused by hyperlipidemia as classical atheroschlerosis risk factor.