Capacity of Anchors in Structural Connections

When dealing with safety in structures, the connections between structural components play an important role. Robustness of a structure as a whole depends both on the load- bearing capacity of the structural component and on the structures capacity to resist total failure, even though a local failure occurs in a component or a connection between components. To avoid progressive collapse it is necessary to be able to carry out a design for connections. A connection may be executed with anchors to withstand local failure of the connection in structures built with prefabricated components. For the design of these anchors, a model is developed for connections in structures performed in prefabricated autoclaved aerated concrete components. The design model takes into account the effect of anchors placed close to the edge, which may result in splitting failure. Further the model is developed to consider the effect of reinforcement diameter and anchor depth. The model is analytical and theoretically derived assuming a static equilibrium stress distribution along the anchor. The theory is compared to laboratory test, including the relevant parameters and the model is refined and theoretically argued analyzing the observed test results. The method presented can be used to improve safety in structures or even optimize the design of the connections

Trapping Efficiency of Diesel Particles Through a Square Duct

Diesel Engines emit complex mixtures of inorganic and organic compounds in the form of both solid and vapour phase particles. Most of the particulates released are ultrafine nanoparticles which are detrimental to human health and can easily enter the body by respiration. The emissions standards on particulate matter release from diesel engines are constantly upgraded within the European Union and with future regulations based on the particles numbers released instead of merely mass, the need for effective aftertreatment devices will increase. Standard particulate filters in the form of wall flow filters can have problems with high soot accumulation, producing a large exhaust backpressure. A potential solution would be to combine the standard filter with a flow through filter to reduce the load on the wall flow filter. In this paper soot particle trapping has been simulated in different continuous flow filters of monolithic structure including the use of promoters, at laminar flow conditions. An Euler Lagrange model, the discrete phase model in Ansys used with user defined functions for forces acting on particles. A method to quickly screen trapping of 5 nm and 10 nm particles in different catalysts designs with tracers was also developed. Simulations of square duct monoliths with promoters show that the strength of the vortices produced are not enough to give a high amount of particle deposition on the catalyst walls. The smallest particles in the simulations, 5 and 10 nm particles were trapped to a higher extent, than larger particles up to 1000 nm, in all studied geometries with the predominant deposition mechanism being Brownian diffusion. The comparison of the different filters designed with a wall flow filter does show that the options for altering a design of a flow through filter, without imposing a too large pressure drop penalty are good.

A Survey on Performance Tools for OpenMP

Advances in processors architecture, such as multicore, increase the size of complexity of parallel computer systems. With multi-core architecture there are different parallel languages that can be used to run parallel programs. One of these languages is OpenMP which embedded in C/Cµ or FORTRAN. Because of this new architecture and the complexity, it is very important to evaluate the performance of OpenMP constructs, kernels, and application program on multi-core systems. Performance is the activity of collecting the information about the execution characteristics of a program. Performance tools consists of at least three interfacing software layers, including instrumentation, measurement, and analysis. The instrumentation layer defines the measured performance events. The measurement layer determines what performance event is actually captured and how it is measured by the tool. The analysis layer processes the performance data and summarizes it into a form that can be displayed in performance tools. In this paper, a number of OpenMP performance tools are surveyed, explaining how each is used to collect, analyse, and display data collection.

Performance and Emission Study of Linseed Oilas a Fuel for CI Engine

Increased energy demand and the concern about environment friendly technology, renewable bio-fuels are better alternative to petroleum products. In the present study linseed oil was used as alternative source for diesel engine fuel and the results were compared with baseline data of neat diesel. Performance parameters such as brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) and emissions parameters such as CO, unburned hydro carbon (UBHC), NOx, CO2 and exhaust temperature were compared. BTE of the engine was lower and BSFC was higher when the engine was fueled with Linseed oil compared to diesel fuel. Emission characteristics are better than diesel fuel. NOx formation by using linseed oil during the experiment was lower than diesel fuel. Linseed oil is non edible oil, so it can be used as an extender of diesel fuel energy source for small and medium energy needs.

The Capacity of Government to Deliver Sustainable and Integrated Transport: The Case of Transit Oriented Development in Perth, Australia

There is a renewed interest in land use transport integration as a means of achieving sustainable accessibility. Such accessibility requires designing more than simply the transport network; it also requires attention to place (built form). Transitoriented development would appear to capture many of the criteria deemed important in land use transport integration. In Perth, Australia, there have been planning policies for the past 20 years requiring transit-oriented development around railway stations throughout the metropolitan area. While the policy intent, particularly at the State level, is clear the implementation of policy has been fairly ineffective. The first part of this paper provides an examination of state and local government planning and transport policies, evaluating them using a set of land use transport integration criteria considered all encompassing. This provides some insight into the extent of state and local government capacity to deliver land use transport integration. The second part of this paper examines the extent of implementation by examining existing and proposed land use around station precincts throughout metropolitan Perth. The findings of this research suggest that the capacity of state and local government to deliver land use transport integration is reasonable in a planning policy sense. Implementation, despite long policy lead times, has been lacking. It appears to be more effective where local planning controls have been suspended with new redevelopment authorities given powers to develop land around railway stations.

RTCoord: A Methodology to Design WSAN Applications

Wireless Sensor and Actor Networks (WSANs) constitute an emerging and pervasive technology that is attracting increasing interest in the research community for a wide range of applications. WSANs have two important requirements: coordination interactions and real-time communication to perform correct and timely actions. This paper introduces a methodology to facilitate the task of the application programmer focusing on the coordination and real-time requirements of WSANs. The methodology proposed in this model uses a real-time component model, UM-RTCOM, which will help us to achieve the design and implementation of applications in WSAN by using the component oriented paradigm. This will help us to develop software components which offer some very interesting features, such as reusability and adaptability which are very suitable for WSANs as they are very dynamic environments with rapidly changing conditions. In addition, a high-level coordination model based on tuple channels (TC-WSAN) is integrated into the methodology by providing a component-based specification of this model in UM-RTCOM; this will allow us to satisfy both sensor-actor and actor-actor coordination requirements in WSANs. Finally, we present in this paper the design and implementation of an application which will help us to show how the methodology can be easily used in order to achieve the development of WSANs applications.

A Study of the Hand-Hold Impact on the EM Interaction of a Cellular Handset and a Human

This paper investigates the impact of the hand-hold positions on both antenna performance and the specific absorption rate (SAR) induced in the user-s head. A cellular handset with external antenna operating at GSM-900 frequency is modeled and simulated using a finite difference time-domain (FDTD)-based platform SEMCAD-X. A specific anthropomorphic mannequin (SAM) is adopted to simulate the user-s head, whereas a semirealistic CAD-model of three-tissues is designed to simulate the user-s hand. The results show that in case of the handset in hand close to head at different positions; the antenna total efficiency gets reduced to (14.5% - 5.9%) at cheek-position and to (27.5% to 11.8%) at tilt-position. The peak averaged SAR1g values in head close to handset without hand, are 4.67 W/Kg and 2.66 W/Kg at cheek and tilt-position, respectively. Due to the presence of hand, the SAR1g in head gets reduced to (3.67-3.31 W/Kg) at cheek-position and to (1.84-1.64 W/Kg) at tilt-position, depending on the hand-hold position.

On The Comparison of Fuzzy Logic and State Space Averaging based Sliding Control Methods Applied onan Arc Welding Machine

In this study, the performance of a high-frequency arc welding machine including a two-switch inverter is analyzed. The control of the system is achieved using two different control techniques i- fuzzy logic control (FLC) ii- state space averaging based sliding control. Fuzzy logic control does not need accurate mathematical model of a plant and can be used in nonlinear applications. The second method needs the mathematical model of the system. In this method the state space equations of the system are derived for two different “on" and “off" states of the switches. The derived state equations are combined with the sliding control rule considering the duty-cycle of the converter. The performance of the system is analyzed by simulating the system using SIMULINK tool box of MATLAB. The simulation results show that fuzzy logic controller is more robust and less sensitive to parameter variations.

Application of Extruded Maize Flour in Gluten-free Bread Formulations

Celiac disease is an immune-mediated disease, triggered in genetically susceptible individuals by ingested gluten from wheat, rye, barley and other closely related cereal grains. The only effective treatment is a strict gluten free diet for life. Latvian producers do not offer gluten-free products. In this research, use of extruded maize flour was tested for substituting rice, maize or buckwheat flour in gluten-free bread formulations at different ratios. Also the influence of extruded maize flour on the quality parameters of gluten-free bread was investigated. The aim of research was to study the influence of extruded maize flour on gluten-free bread quality. Addition of extruded maize flour affect gluten-free bread crumb color, structure of crumb, weight loss and dry off of bread.

A Detailed Timber Harvest Simulator Coupled with 3-D Visualization

In today-s world, the efficient utilization of wood resources comes more and more to the mind of forest owners. It is a very complex challenge to ensure an efficient harvest of the wood resources. This is one of the scopes the project “Virtual Forest II" addresses. Its core is a database with data about forests containing approximately 260 million trees located in North Rhine-Westphalia (NRW). Based on this data, tree growth simulations and wood mobilization simulations can be conducted. This paper focuses on the latter. It describes a discrete-event-simulation with an attached 3-D real time visualization which simulates timber harvest using trees from the database with different crop resources. This simulation can be displayed in 3-D to show the progress of the wood crop. All the data gathered during the simulation is presented as a detailed summary afterwards. This summary includes cost-benefit calculations and can be compared to those of previous runs to optimize the financial outcome of the timber harvest by exchanging crop resources or modifying their parameters.

ZMP Based Reference Generation for Biped Walking Robots

Recent fifteen years witnessed fast improvements in the field of humanoid robotics. The human-like robot structure is more suitable to human environment with its supreme obstacle avoidance properties when compared with wheeled service robots. However, the walking control for bipedal robots is a challenging task due to their complex dynamics. Stable reference generation plays a very important role in control. Linear Inverted Pendulum Model (LIPM) and the Zero Moment Point (ZMP) criterion are applied in a number of studies for stable walking reference generation of biped walking robots. This paper follows this main approach too. We propose a natural and continuous ZMP reference trajectory for a stable and human-like walk. The ZMP reference trajectories move forward under the sole of the support foot when the robot body is supported by a single leg. Robot center of mass trajectory is obtained from predefined ZMP reference trajectories by a Fourier series approximation method. The Gibbs phenomenon problem common with Fourier approximations of discontinuous functions is avoided by employing continuous ZMP references. Also, these ZMP reference trajectories possess pre-assigned single and double support phases, which are very useful in experimental tuning work. The ZMP based reference generation strategy is tested via threedimensional full-dynamics simulations of a 12-degrees-of-freedom biped robot model. Simulation results indicate that the proposed reference trajectory generation technique is successful.

Design and Instrumentation of a Benchmark Multivariable Nonlinear Control Laboratory

The purpose of this paper is to present the design and instrumentation of a new benchmark multivariable nonlinear control laboratory. The mathematical model of this system may be used to test the applicability and performance of various nonlinear control procedures. The system is a two degree-of-freedom robotic arm with soft and hard (discontinuous) nonlinear terms. Two novel mechanisms are designed to allow the implementation of adjustable Coulomb friction and backlash.

Optimization of the Nutrient Supplients for Cellulase Production with the Basal Medium Palm Oil Mill Effluent

A statistical optimization was studied to design a media composition to produce optimum cellulolytic enzyme where palm oil mill effluent (POME) as a basal medium and filamentous fungus, Trichoderma reesei RUT-C30 were used in the liquid state bioconversion(LSB). 2% (w/v) total suspended solid, TSS, of the POME supplemented with 1% (w/v) cellulose, 0.5%(w/v) peptone and 0.02% (v/v) Tween 80 was estimated to produce the optimum CMCase activity of 18.53 U/ml through the statistical analysis followed by the faced centered central composite design(FCCCD). The probability values of cellulose (

The Implementation of Remote Automation Execution Agent over ACL on QOS POLICY Based System

This paper will present the implementation of QoS policy based system by utilizing rules on Access Control List (ACL) over Layer 3 (L3) switch. Also presented is the architecture on that implementation; the tools being used and the result were gathered. The system architecture has an ability to control ACL rules which are installed inside an external L3 switch. ACL rules used to instruct the way of access control being executed, in order to entertain all traffics through that particular switch. The main advantage of using this approach is that the single point of failure could be prevented when there are any changes on ACL rules inside L3 switches. Another advantage is that the agent could instruct ACL rules automatically straight away based on the changes occur on policy database without configuring them one by one. Other than that, when QoS policy based system was implemented in distributed environment, the monitoring process can be synchronized easily due to the automate process running by agent over external policy devices.

Optimal Estimation of Surface Reflectance from Landsat TM Visible and Mid Infrared Data over Penang Island

Retrieval of the surface reflectance is important in the remotely sensed data analysis to obtain the atmospheric reflectance or atmospheric correction. The relationship between visible and mid infrared reflectance over land was investigated and developed in this study. The surface reflectances of the two visible bands were measured using a handheld spectroradiometer collected around Penang Island. In this study, we use the assumption that the 2.1 μm band is not affected by aerosol and it is transparent to most aerosol types (except dust). Therefore the satellite observed signal is the same as the surface signal in 2.1 μm band. The correlation between the surface reflectance measured by the spectroradiometer in the blue and red region and the 2.1 μm observed by the satellite has been established. We investigate five dates of Landsat TM scenes in this study. The finding obtained by this study indicates that the surface reflectance can be retrieved from the 2.1 μm band.

Degradability Studies of Photodegradable Plastic Film

Polypropylene blended with natural oil and pigment additives has been studied. Different formulations for each compound were made into polybag used for cultivation of oil palm seedlings for strength and mechanical properties studies. One group of sample was exposed under normal sunlight to initiate degradation and another group of sample was placed under shaded area for five months. All samples were tested for tensile strength to determine the degradation effects. The tensile strength of directly exposed sunlight samples and shaded area showed up to 50% and 25% degradation respectively. However, similar reduction of Young’s modulus for all samples was found for both exposures. Structural investigations were done using FTIR to detect deformation. The natural additives that were used in the studies were all natural and environmental friendly

A PI Controller for Enhancing the Transient Stability of Multi Pulse Inverter Based Static Synchronous Series Compensator (SSSC) With Superconducting Magnetic Energy Storage(SMES)

The power system network is becoming more complex nowadays and it is very difficult to maintain the stability of the system. Today-s enhancement of technology makes it possible to include new energy storage devices in the electric power system. In addition, with the aid of power electronic devices, it is possible to independently exchange active and reactive power flow with the utility grid. The main purpose of this paper proposes a Proportional – Integral (PI) control based 48 – pulse Inverter based Static Synchronous Series Compensator (SSSC) with and without Superconducting Magnetic Energy Storage (SMES) used for enhancing the transient stability and regulating power flow in automatic mode. Using a test power system through the dynamic simulation in Matlab/Simulink platform validates the performance of the proposed SSSC with and without SMES system.

Investigations on Some Operations of Soft Sets

Soft set theory was initiated by Molodtsov in 1999. In the past years, this theory had been applied to many branches of mathematics, information science and computer science. In 2003, Maji et al. introduced some operations of soft sets and gave some operational rules. Recently, some of these operational rules are pointed out to be not true. Furthermore, Ali et al., in their paper, introduced and discussed some new operations of soft sets. In this paper, we further investigate these operational rules given by Maji et al. and Ali et al.. We obtain some sufficient-necessary conditions such that corresponding operational rules hold and give correct forms for some operational rules. These results will be help for us to use rightly operational rules of soft sets in research and application of soft set theory.

A Study of Flow and Sedimentation at the Basins of Khoozestan Province Rivers: A Case Study of Boneh Basht Pumping Station

The present paper is a case study about exploitation of Kheir Abad river (Khoozestan, Iran) water resources and the problems caused by river sediments around the pumping stations. The weak points and strong points of Boneh Basht pumping station have been studied by experienced experts, work teams, and consulting engineers and technical and executive solutions have been suggested. Therefore, the suggestions of this article are based on the performed studies and are proposed in order to evaluate the logical solutions. Rather complicated processes resulting from the interaction of water flows and sediments observed at Boneh Basht pumping station occur at other pumping stations in almost the same way. Therefore, Boneh Basht pumping station can be selected as a sample (pilot) and up-to-date theories and experiences can be applied to this station and the results can be offered to other stations.

Polyisoprene-coated Silica/Natural Rubber Composite

The commercial white tyres are usually used for forklifts in food and medicine industries. Conventionally, silica is used as reinforcement in the tyres. However, the adhesion between silica particles and rubber is remarkably poor. To improve the problem of adhesion and hence enhance wear resistance, modification of silica surface is one of the solutions. In this work, the natural rubber compound blending with polyisoprene-coated silica prepared by admicellar polymerization technique was studied to compare with the natural rubber compound of unmodified silica. The surface characterization of modified silica was also examined by SEM, FTIR, and TGA. The results show that polyisoprene-coated silica/natural rubber compound gave better overall mechanical properties, especially wear resistance with the improvement of the adhesion between silica and natural rubber matrix that can be seen in the SEM micrograph.