Interval Type-2 Fuzzy Vibration Control of an ERF Embedded Smart Structure

The main objective of this article is to present the semi-active vibration control using an electro-rheological fluid embedded sandwich structure for a cantilever beam. ER fluid is a smart material, which cause the suspended particles polarize and connect each other to form chain. The stiffness and damping coefficients of the ER fluid can be changed in 10 micro seconds; therefore, ERF is suitable to become the material embedded in the tunable vibration absorber to become a smart absorber. For the ERF smart material embedded structure, the fuzzy control law depends on the experimental expert database and the proposed self-tuning strategy. The electric field is controlled by a CRIO embedded system to implement the real application. This study investigates the different performances using the Type-1 fuzzy and interval Type-2 fuzzy controllers. The Interval type-2 fuzzy control is used to improve the modeling uncertainties for this ERF embedded shock absorber. The self-tuning vibration controllers using Type-1 and Interval Type-2 fuzzy law are implemented to the shock absorber system. Based on the resulting performance, Internal Type-2 fuzzy is better than the traditional Type-1 fuzzy control for this vibration control system.  

An Embedded System for Artificial Intelligence Applications

Conventional approaches in the implementation of logic programming applications on embedded systems are solely of software nature. As a consequence, a compiler is needed that transforms the initial declarative logic program to its equivalent procedural one, to be programmed to the microprocessor. This approach increases the complexity of the final implementation and reduces the overall system's performance. On the contrary, presenting hardware implementations which are only capable of supporting logic programs prevents their use in applications where logic programs need to be intertwined with traditional procedural ones, for a specific application. We exploit HW/SW codesign methods to present a microprocessor, capable of supporting hybrid applications using both programming approaches. We take advantage of the close relationship between attribute grammar (AG) evaluation and knowledge engineering methods to present a programmable hardware parser that performs logic derivations and combine it with an extension of a conventional RISC microprocessor that performs the unification process to report the success or failure of those derivations. The extended RISC microprocessor is still capable of executing conventional procedural programs, thus hybrid applications can be implemented. The presented implementation is programmable, supports the execution of hybrid applications, increases the performance of logic derivations (experimental analysis yields an approximate 1000% increase in performance) and reduces the complexity of the final implemented code. The proposed hardware design is supported by a proposed extended C-language called C-AG.

Physical Modeling of Oil Well Fire Extinguishing Using a Turbojet on a Barge

There are reports of gas and oil wells fire due to different accidents. Many different methods are used for fire fighting in gas and oil industry. Traditional fire extinguishing techniques are mostly faced with many problems and are usually time consuming and needs lots of equipments. Besides, they cause damages to facilities, and create health and environmental problems. This article proposes innovative approach in fire extinguishing techniques in oil and gas industry, especially applicable for burning oil wells located offshore. Fire extinguishment employing a turbojet is a novel approach which can help to extinguishment the fire in short period of time. Divergent and convergent turbojets modeled in laboratory scale along with a high pressure flame were used. Different experiments were conducted to determine the relationship between output discharges of trumpet and oil wells. The results were corrected and the relationship between dimensionless parameters of flame and fire extinguishment distances and also the output discharge of turbojet and oil wells in specified distances are demonstrated by specific curves.

A New Model for Discovering XML Association Rules from XML Documents

The inherent flexibilities of XML in both structure and semantics makes mining from XML data a complex task with more challenges compared to traditional association rule mining in relational databases. In this paper, we propose a new model for the effective extraction of generalized association rules form a XML document collection. We directly use frequent subtree mining techniques in the discovery process and do not ignore the tree structure of data in the final rules. The frequent subtrees based on the user provided support are split to complement subtrees to form the rules. We explain our model within multi-steps from data preparation to rule generation.

Improvement of Photoluminescence Uniformity of Porous Silicon by using Stirring Anodization Process

The electrolyte stirring method of anodization etching process for manufacturing porous silicon (PS) is reported in this work. Two experimental setups of nature air stirring (PS-ASM) and electrolyte stirring (PS-ESM) are employed to clarify the influence of stirring mechanisms on electrochemical etching process. Compared to traditional fabrication without any stirring apparatus (PS-TM), a large plateau region of PS surface structure is obtained from samples with both stirring methods by the 3D-profiler measurement. Moreover, the light emission response is also improved by both proposed electrolyte stirring methods due to the cycling force in electrolyte could effectively enhance etch-carrier distribution while the electrochemical etching process is made. According to the analysis of statistical calculation of photoluminescence (PL) intensity, lower standard deviations are obtained from PS-samples with studied stirring methods, i.e. the uniformity of PL-intensity is effectively improved. The calculated deviations of PL-intensity are 93.2, 74.5 and 64, respectively, for PS-TM, PS-ASM and PS-ESM.

Fuzzy Logic Speed Control of Three Phase Induction Motor Drive

This paper presents an intelligent speed control system based on fuzzy logic for a voltage source PWM inverter-fed indirect vector controlled induction motor drive. Traditional indirect vector control system of induction motor introduces conventional PI regulator in outer speed loop; it is proved that the low precision of the speed regulator debases the performance of the whole system. To overcome this problem, replacement of PI controller by an intelligent controller based on fuzzy set theory is proposed. The performance of the intelligent controller has been investigated through digital simulation using MATLAB-SIMULINK package for different operating conditions such as sudden change in reference speed and load torque. The simulation results demonstrate that the performance of the proposed controller is better than that of the conventional PI controller.

Decision Support System Based on Data Warehouse

Typical Intelligent Decision Support System is 4-based, its design composes of Data Warehouse, Online Analytical Processing, Data Mining and Decision Supporting based on models, which is called Decision Support System Based on Data Warehouse (DSSBDW). This way takes ETL,OLAP and DM as its implementing means, and integrates traditional model-driving DSS and data-driving DSS into a whole. For this kind of problem, this paper analyzes the DSSBDW architecture and DW model, and discusses the following key issues: ETL designing and Realization; metadata managing technology using XML; SQL implementing, optimizing performance, data mapping in OLAP; lastly, it illustrates the designing principle and method of DW in DSSBDW.

Virtual Mechanical Engineering Education – A Case Study

Virtual engineering technology has undergone rapid progress in recent years and is being adopted increasingly by manufacturing companies of many engineering disciplines. There is an increasing demand from industry for qualified virtual engineers. The qualified virtual engineers should have the ability of applying engineering principles and mechanical design methods within the commercial software package environment. It is a challenge to the engineering education in universities which traditionally tends to lack the integration of knowledge and skills required for solving real world problems. In this paper, a case study shows some recent development of a MSc Mechanical Engineering course at Department of Engineering and Technology in MMU, and in particular, two units Simulation of Mechanical Systems(SMS) and Computer Aided Fatigue Analysis(CAFA) that emphasize virtual engineering education and promote integration of knowledge acquisition, skill training and industrial application.

Pregnancy Myths and Early Chilcare: Research Reflections from the Rural Punjab, Pakistan

Pregnancy is considered a special period in a woman’s life. There are myths about pregnancy that describe gender predictions, dietary beliefs, pregnancy signs, and risk of magic or witchcraft. Majority of these myths is in connection with the early childcare. In traditional societies midwives and experienced women practice and teach these myths to young mothers. Mother who feel special and vulnerable, at the same time feel secure in following these socially transmitted myths. Rural Punjab, a province of Pakistan has a culture rich with beliefs and myths. Myths about pregnancy are significant in rural culture and pregnancy care is seen as mother and childcare. This paper presents my research reflections that I did as a part of my Ph.D studies about early childcare beliefs and rituals practiced in rural Punjab, Pakistan.

Building an Inferential Model between Caregivers and Patients by using RFID

Nosocomial (i.e., hospital-acquired) infections (NI) is a major cause of morbidity and mortality in hospitals. NI rate is higher in intensive care units (ICU) than in the general ward due to patients with severe symptoms, poor immunity, and accepted many invasive therapies. Contact behaviors between health caregivers and patients is one of the infect factors. It is difficult to obtain complete contact records by traditional method of retrospective analysis of medical records. This paper establishes a contact history inferential model (CHIM) intended to extend the use of Proximity Sensing of rapid frequency identification (RFID) technology to transferring all proximity events between health caregivers and patients into clinical events (close-in events, contact events and invasive events).The results of the study indicated that the CHIM can infer proximity care activities into close-in events and contact events. The infection control team could redesign and build optimal workflow in the ICU according to the patient-specific contact history which provided by our automatic tracing system.

Organizational Decision Based on Business Intelligence

Nowadays, obtaining traditional statistics and reports is not adequate for the needs of organizational managers. The managers need to analyze and to transform the raw data into knowledge in the world filled with information. Therefore in this regard various processes have been developed. In the meantime the artificial intelligence-based processes are used and the new topics such as business intelligence and knowledge discovery have emerged. In the current paper it is sought to study the business intelligence and its applications in the organizations.

Decoupled Scheduling in Meta Environment

Grid scheduling is the process of mapping grid jobs to resources over multiple administrative domains. Traditionally, application-level schedulers have been tightly integrated with the application itself and were not easily applied to other applications. This design is generic that decouples the scheduler core (the search procedure) from the application-specific (e.g. application performance models) and platform-specific (e.g. collection of resource information) components used by the search procedure. In this decoupled approach the application details are not revealed completely to broker, but customer will give the application to resource provider for execution. In a decoupled approach, apart from scheduling, the resource selection can be performed independently in order to achieve scalability.

Corporate Social Responsibility and Values in Innovation Management

Corporate social responsibility (CSR) viewpoint have challenged the traditional perception to understand corporations position. Production- and managerial-centred views are expanding towards reference group-centred policies. Consequently, the significance of new kind of knowledge has emerged. In addition to management of the organisation, the idea of CSR emphasises the importance to recognise the value-expectations of operational environment. It is know that management is often well-aware of corporate social responsibilities, but it is less clear how well these high level goals are understood in practical product design and development work. In this study, the apprehension above proved to be real to some degree. While management was very aware of CSR it was less familiar to designers. The outcome shows that it is essential to raise ethical values and issues higher in corporate communication, if it is wished that they materialize also in products.

Image Transmission via Iterative Cellular-Turbo System

To compress, improve bit error performance and also enhance 2D images, a new scheme, called Iterative Cellular-Turbo System (IC-TS) is introduced. In IC-TS, the original image is partitioned into 2N quantization levels, where N is denoted as bit planes. Then each of the N-bit-plane is coded by Turbo encoder and transmitted over Additive White Gaussian Noise (AWGN) channel. At the receiver side, bit-planes are re-assembled taking into consideration of neighborhood relationship of pixels in 2-D images. Each of the noisy bit-plane values of the image is evaluated iteratively using IC-TS structure, which is composed of equalization block; Iterative Cellular Image Processing Algorithm (ICIPA) and Turbo decoder. In IC-TS, there is an iterative feedback link between ICIPA and Turbo decoder. ICIPA uses mean and standard deviation of estimated values of each pixel neighborhood. It has extra-ordinary satisfactory results of both Bit Error Rate (BER) and image enhancement performance for less than -1 dB Signal-to-Noise Ratio (SNR) values, compared to traditional turbo coding scheme and 2-D filtering, applied separately. Also, compression can be achieved by using IC-TS systems. In compression, less memory storage is used and data rate is increased up to N-1 times by simply choosing any number of bit slices, sacrificing resolution. Hence, it is concluded that IC-TS system will be a compromising approach in 2-D image transmission, recovery of noisy signals and image compression.

Kinematic Parameter-Independent Modeling and Measuring of Three-Axis Machine Tools

The primary objective of this paper was to construct a “kinematic parameter-independent modeling of three-axis machine tools for geometric error measurement" technique. Improving the accuracy of the geometric error for three-axis machine tools is one of the machine tools- core techniques. This paper first applied the traditional method of HTM to deduce the geometric error model for three-axis machine tools. This geometric error model was related to the three-axis kinematic parameters where the overall errors was relative to the machine reference coordinate system. Given that the measurement of the linear axis in this model should be on the ideal motion axis, there were practical difficulties. Through a measurement method consolidating translational errors and rotational errors in the geometric error model, we simplified the three-axis geometric error model to a kinematic parameter-independent model. Finally, based on the new measurement method corresponding to this error model, we established a truly practical and more accurate error measuring technique for three-axis machine tools.

Learning through Shared Procedures -A Case of Using Technology to Bridge the Gap between Theory and Practice in Officer Education

In this article we explore how computer assisted exercises may allow for bridging the traditional gap between theory and practice in professional education. To educate officers able to master the complexity of the battlefield the Norwegian Military Academy needs to develop a learning environment that allows for creating viable connections between the educational environment and the field of practice. In response to this challenge we explore the conditions necessary to make computer assisted training systems (CATS) a useful tool to create structural similarities between an educational context and the field of military practice. Although, CATS may facilitate work procedures close to real life situations, this case do demonstrate how professional competence also must build on viable learning theories and environments. This paper explores the conditions that allow for using simulators to facilitate professional competence from within an educational setting. We develop a generic didactic model that ascribes learning to participation in iterative cycles of action and reflection. The development of this model is motivated by the need to develop an interdisciplinary professional education rooted in the pattern of military practice.

Information Security in E-Learning through Identification of Humans

During recent years, the traditional learning approaches have undergone fundamental changes due to the emergence of new technologies such as multimedia, hypermedia and telecommunication. E-learning is a modern world phenomenon that has come into existence in the information age and in a knowledgebased society. E-learning has developed significantly within a short period of time. Thus it is of a great significant to secure information, allow a confident access and prevent unauthorized accesses. Making use of individuals- physiologic or behavioral (biometric) properties is a confident method to make the information secure. Among the biometrics, fingerprint is more acceptable and most countries use it as an efficient methods of identification. This article provides a new method to compare the fingerprint comparison by pattern recognition and image processing techniques. To verify fingerprint, the shortest distance method is used together with perceptronic multilayer neural network functioning based on minutiae. This method is highly accurate in the extraction of minutiae and it accelerates comparisons due to elimination of false minutiae and is more reliable compared with methods that merely use directional images.

Effect of Teaching Games for Understanding Approach on Students- Cognitive Learning Outcome

The study investigated the effects of Teaching Games for Understanding approach on students ‘cognitive learning outcome. The study was a quasi-experimental non-equivalent pretest-posttest control group design whereby 10 year old primary school students (n=72) were randomly assigned to an experimental and a control group. The experimental group students were exposed with TGfU approach and the control group with the Traditional Skill approach of handball game. Game Performance Assessment Instrument (GPAI) was used to measure students' tactical understanding and decision making in 3 versus 3 handball game situations. Analysis of covariance (ANCOVA) was used to analyze the data. The results reveal that there was a significant difference between the TGfU approach group and the traditional skill approach group students on post test score (F (1, 69) = 248.83, p < .05). The findings of this study suggested the importance of TGfU approach to improve primary students’ tactical understanding and decision making in handball game.

The Role of Gender and Age on Students- Perceptions towards Online Education Case Study: Sakarya University, Vocational High School

The aim of this study is to find out and analyze the role of gender and age on the perceptions of students to the distant online program offered by Vocational High School in Sakarya University. The research is based on a questionnaire as a mean of data collection method to find out the role of age and gender on the student-s perceptions toward online education, and the study progressed through finding relationships between the variables used in the data collection instrument. The findings of the analysis revealed that although the students registered to the online program by will, they preferred the traditional face-to-face education due to the difficulty of the nonverbal communication, their incompetence of using the technology required, and their belief in traditional face-toface learning more than online education. Regarding gender, the results showed that the female students have a better perception of the online education as opposed to the male students. Regarding age, the results showed that the older the students are the more is their preference towards attending face-toface classes.

The Rise of Nationalism among South Korean Youth and Democracy: An Analysis

The 2008 Candlelight Protests of Korea was very significant to portray the political environment among the South Korean youth. Many challenges and new advanced technologies have driven the youth community to be engaged in the political arena that has shifted them from traditional Korean youth to a very greater community. Due to historical perspective with the people of North Korea, the young generation has embraced different view of ethnic nationalism. This study examines the youth involvement in politics in line with their level of acceptance the practice of democracy. The increase usage of new media has shown great results in the survey results whereby the youth used as a platform to gain political information and brought higher degree of their sociopolitical interests among them. Furthermore, the rise of nationalism and patriotism will be discussed in this paper to the dynamism of the political approaches used by the Korea government