All-Pairs Shortest-Paths Problem for Unweighted Graphs in O(n2 log n) Time

Given a simple connected unweighted undirected graph G = (V (G), E(G)) with |V (G)| = n and |E(G)| = m, we present a new algorithm for the all-pairs shortest-path (APSP) problem. The running time of our algorithm is in O(n2 log n). This bound is an improvement over previous best known O(n2.376) time bound of Raimund Seidel (1995) for general graphs. The algorithm presented does not rely on fast matrix multiplication. Our algorithm with slight modifications, enables us to compute the APSP problem for unweighted directed graph in time O(n2 log n), improving a previous best known O(n2.575) time bound of Uri Zwick (2002).

Extended Least Squares LS–SVM

Among neural models the Support Vector Machine (SVM) solutions are attracting increasing attention, mostly because they eliminate certain crucial questions involved by neural network construction. The main drawback of standard SVM is its high computational complexity, therefore recently a new technique, the Least Squares SVM (LS–SVM) has been introduced. In this paper we present an extended view of the Least Squares Support Vector Regression (LS–SVR), which enables us to develop new formulations and algorithms to this regression technique. Based on manipulating the linear equation set -which embodies all information about the regression in the learning process- some new methods are introduced to simplify the formulations, speed up the calculations and/or provide better results.

Markov Game Controller Design Algorithms

Markov games are a generalization of Markov decision process to a multi-agent setting. Two-player zero-sum Markov game framework offers an effective platform for designing robust controllers. This paper presents two novel controller design algorithms that use ideas from game-theory literature to produce reliable controllers that are able to maintain performance in presence of noise and parameter variations. A more widely used approach for controller design is the H∞ optimal control, which suffers from high computational demand and at times, may be infeasible. Our approach generates an optimal control policy for the agent (controller) via a simple Linear Program enabling the controller to learn about the unknown environment. The controller is facing an unknown environment, and in our formulation this environment corresponds to the behavior rules of the noise modeled as the opponent. Proposed controller architectures attempt to improve controller reliability by a gradual mixing of algorithmic approaches drawn from the game theory literature and the Minimax-Q Markov game solution approach, in a reinforcement-learning framework. We test the proposed algorithms on a simulated Inverted Pendulum Swing-up task and compare its performance against standard Q learning.

Using Genetic Algorithm to Improve Information Retrieval Systems

This study investigates the use of genetic algorithms in information retrieval. The method is shown to be applicable to three well-known documents collections, where more relevant documents are presented to users in the genetic modification. In this paper we present a new fitness function for approximate information retrieval which is very fast and very flexible, than cosine similarity fitness function.

A Case Study on Appearance Based Feature Extraction Techniques and Their Susceptibility to Image Degradations for the Task of Face Recognition

Over the past decades, automatic face recognition has become a highly active research area, mainly due to the countless application possibilities in both the private as well as the public sector. Numerous algorithms have been proposed in the literature to cope with the problem of face recognition, nevertheless, a group of methods commonly referred to as appearance based have emerged as the dominant solution to the face recognition problem. Many comparative studies concerned with the performance of appearance based methods have already been presented in the literature, not rarely with inconclusive and often with contradictory results. No consent has been reached within the scientific community regarding the relative ranking of the efficiency of appearance based methods for the face recognition task, let alone regarding their susceptibility to appearance changes induced by various environmental factors. To tackle these open issues, this paper assess the performance of the three dominant appearance based methods: principal component analysis, linear discriminant analysis and independent component analysis, and compares them on equal footing (i.e., with the same preprocessing procedure, with optimized parameters for the best possible performance, etc.) in face verification experiments on the publicly available XM2VTS database. In addition to the comparative analysis on the XM2VTS database, ten degraded versions of the database are also employed in the experiments to evaluate the susceptibility of the appearance based methods on various image degradations which can occur in "real-life" operating conditions. Our experimental results suggest that linear discriminant analysis ensures the most consistent verification rates across the tested databases.

Minimal Residual Method for Adaptive Filtering with Finite Termination

We present a discussion of three adaptive filtering algorithms well known for their one-step termination property, in terms of their relationship with the minimal residual method. These algorithms are the normalized least mean square (NLMS), Affine Projection algorithm (APA) and the recursive least squares algorithm (RLS). The NLMS is shown to be a result of the orthogonality condition imposed on the instantaneous approximation of the Wiener equation, while APA and RLS algorithm result from orthogonality condition in multi-dimensional minimal residual formulation. Further analysis of the minimal residual formulation for the RLS leads to a triangular system which also possesses the one-step termination property (in exact arithmetic)

Contact Drying Simulation of Particulate Materials: A Comprehensive Approach

In this work, simulation algorithms for contact drying of agitated particulate materials under vacuum and at atmospheric pressure were developed. The implementation of algorithms gives a predictive estimation of drying rate curves and bulk bed temperature during contact drying. The calculations are based on the penetration model to describe the drying process, where all process parameters such as heat and mass transfer coefficients, effective bed properties, gas and liquid phase properties are estimated with proper correlations. Simulation results were compared with experimental data from the literature. In both cases, simulation results were in good agreement with experimental data. Few deviations were identified and the limitations of the predictive capabilities of the models are discussed. The programs give a good insight of the drying behaviour of the analysed powders.

Harris Extraction and SIFT Matching for Correlation of Two Tablets

This article presents the developments of efficient algorithms for tablet copies comparison. Image recognition has specialized use in digital systems such as medical imaging, computer vision, defense, communication etc. Comparison between two images that look indistinguishable is a formidable task. Two images taken from different sources might look identical but due to different digitizing properties they are not. Whereas small variation in image information such as cropping, rotation, and slight photometric alteration are unsuitable for based matching techniques. In this paper we introduce different matching algorithms designed to facilitate, for art centers, identifying real painting images from fake ones. Different vision algorithms for local image features are implemented using MATLAB. In this framework a Table Comparison Computer Tool “TCCT" is designed to facilitate our research. The TCCT is a Graphical Unit Interface (GUI) tool used to identify images by its shapes and objects. Parameter of vision system is fully accessible to user through this graphical unit interface. And then for matching, it applies different description technique that can identify exact figures of objects.

Novel Hybrid Method for Gene Selection and Cancer Prediction

Microarray data profiles gene expression on a whole genome scale, therefore, it provides a good way to study associations between gene expression and occurrence or progression of cancer. More and more researchers realized that microarray data is helpful to predict cancer sample. However, the high dimension of gene expressions is much larger than the sample size, which makes this task very difficult. Therefore, how to identify the significant genes causing cancer becomes emergency and also a hot and hard research topic. Many feature selection algorithms have been proposed in the past focusing on improving cancer predictive accuracy at the expense of ignoring the correlations between the features. In this work, a novel framework (named by SGS) is presented for stable gene selection and efficient cancer prediction . The proposed framework first performs clustering algorithm to find the gene groups where genes in each group have higher correlation coefficient, and then selects the significant genes in each group with Bayesian Lasso and important gene groups with group Lasso, and finally builds prediction model based on the shrinkage gene space with efficient classification algorithm (such as, SVM, 1NN, Regression and etc.). Experiment results on real world data show that the proposed framework often outperforms the existing feature selection and prediction methods, say SAM, IG and Lasso-type prediction model.

A Comparison and Analysis of Name Matching Algorithms

Names are important in many societies, even in technologically oriented ones which use e.g. ID systems to identify individual people. Names such as surnames are the most important as they are used in many processes, such as identifying of people and genealogical research. On the other hand variation of names can be a major problem for the identification and search for people, e.g. web search or security reasons. Name matching presumes a-priori that the recorded name written in one alphabet reflects the phonetic identity of two samples or some transcription error in copying a previously recorded name. We add to this the lode that the two names imply the same person. This paper describes name variations and some basic description of various name matching algorithms developed to overcome name variation and to find reasonable variants of names which can be used to further increasing mismatches for record linkage and name search. The implementation contains algorithms for computing a range of fuzzy matching based on different types of algorithms, e.g. composite and hybrid methods and allowing us to test and measure algorithms for accuracy. NYSIIS, LIG2 and Phonex have been shown to perform well and provided sufficient flexibility to be included in the linkage/matching process for optimising name searching.

A New Scheduling Algorithm Based on Traffic Classification Using Imprecise Computation

Wireless channels are characterized by more serious bursty and location-dependent errors. Many packet scheduling algorithms have been proposed for wireless networks to guarantee fairness and delay bounds. However, most existing schemes do not consider the difference of traffic natures among packet flows. This will cause the delay-weight coupling problem. In particular, serious queuing delays may be incurred for real-time flows. In this paper, it is proposed a scheduling algorithm that takes traffic types of flows into consideration when scheduling packets and also it is provided scheduling flexibility by trading off video quality to meet the playback deadline.

Intelligent Audio Watermarking using Genetic Algorithm in DWT Domain

In this paper, an innovative watermarking scheme for audio signal based on genetic algorithms (GA) in the discrete wavelet transforms is proposed. It is robust against watermarking attacks, which are commonly employed in literature. In addition, the watermarked image quality is also considered. We employ GA for the optimal localization and intensity of watermark. The watermark detection process can be performed without using the original audio signal. The experimental results demonstrate that watermark is inaudible and robust to many digital signal processing, such as cropping, low pass filter, additive noise.

Classification Algorithms in Human Activity Recognition using Smartphones

Rapid advancement in computing technology brings computers and humans to be seamlessly integrated in future. The emergence of smartphone has driven computing era towards ubiquitous and pervasive computing. Recognizing human activity has garnered a lot of interest and has raised significant researches- concerns in identifying contextual information useful to human activity recognition. Not only unobtrusive to users in daily life, smartphone has embedded built-in sensors that capable to sense contextual information of its users supported with wide range capability of network connections. In this paper, we will discuss the classification algorithms used in smartphone-based human activity. Existing technologies pertaining to smartphone-based researches in human activity recognition will be highlighted and discussed. Our paper will also present our findings and opinions to formulate improvement ideas in current researches- trends. Understanding research trends will enable researchers to have clearer research direction and common vision on latest smartphone-based human activity recognition area.

Software Maintenance Severity Prediction for Object Oriented Systems

As the majority of faults are found in a few of its modules so there is a need to investigate the modules that are affected severely as compared to other modules and proper maintenance need to be done in time especially for the critical applications. As, Neural networks, which have been already applied in software engineering applications to build reliability growth models predict the gross change or reusability metrics. Neural networks are non-linear sophisticated modeling techniques that are able to model complex functions. Neural network techniques are used when exact nature of input and outputs is not known. A key feature is that they learn the relationship between input and output through training. In this present work, various Neural Network Based techniques are explored and comparative analysis is performed for the prediction of level of need of maintenance by predicting level severity of faults present in NASA-s public domain defect dataset. The comparison of different algorithms is made on the basis of Mean Absolute Error, Root Mean Square Error and Accuracy Values. It is concluded that Generalized Regression Networks is the best algorithm for classification of the software components into different level of severity of impact of the faults. The algorithm can be used to develop model that can be used for identifying modules that are heavily affected by the faults.

Ensembling Classifiers – An Application toImage Data Classification from Cherenkov Telescope Experiment

Ensemble learning algorithms such as AdaBoost and Bagging have been in active research and shown improvements in classification results for several benchmarking data sets with mainly decision trees as their base classifiers. In this paper we experiment to apply these Meta learning techniques with classifiers such as random forests, neural networks and support vector machines. The data sets are from MAGIC, a Cherenkov telescope experiment. The task is to classify gamma signals from overwhelmingly hadron and muon signals representing a rare class classification problem. We compare the individual classifiers with their ensemble counterparts and discuss the results. WEKA a wonderful tool for machine learning has been used for making the experiments.

Coverage and Connectivity Problem in Sensor Networks

In over deployed sensor networks, one approach to Conserve energy is to keep only a small subset of sensors active at Any instant. For the coverage problems, the monitoring area in a set of points that require sensing, called demand points, and consider that the node coverage area is a circle of range R, where R is the sensing range, If the Distance between a demand point and a sensor node is less than R, the node is able to cover this point. We consider a wireless sensor network consisting of a set of sensors deployed randomly. A point in the monitored area is covered if it is within the sensing range of a sensor. In some applications, when the network is sufficiently dense, area coverage can be approximated by guaranteeing point coverage. In this case, all the points of wireless devices could be used to represent the whole area, and the working sensors are supposed to cover all the sensors. We also introduce Hybrid Algorithm and challenges related to coverage in sensor networks.

Automated Segmentation of ECG Signals using Piecewise Derivative Dynamic Time Warping

Electrocardiogram (ECG) segmentation is necessary to help reduce the time consuming task of manually annotating ECG-s. Several algorithms have been developed to segment the ECG automatically. We first review several of such methods, and then present a new single lead segmentation method based on Adaptive piecewise constant approximation (APCA) and Piecewise derivative dynamic time warping (PDDTW). The results are tested on the QT database. We compared our results to Laguna-s two lead method. Our proposed approach has a comparable mean error, but yields a slightly higher standard deviation than Laguna-s method.

Linear Phase High Pass FIR Filter Design using Improved Particle Swarm Optimization

This paper presents an optimal design of linear phase digital high pass finite impulse response (FIR) filter using Improved Particle Swarm Optimization (IPSO). In the design process, the filter length, pass band and stop band frequencies, feasible pass band and stop band ripple sizes are specified. FIR filter design is a multi-modal optimization problem. An iterative method is introduced to find the optimal solution of FIR filter design problem. Evolutionary algorithms like real code genetic algorithm (RGA), particle swarm optimization (PSO), improved particle swarm optimization (IPSO) have been used in this work for the design of linear phase high pass FIR filter. IPSO is an improved PSO that proposes a new definition for the velocity vector and swarm updating and hence the solution quality is improved. A comparison of simulation results reveals the optimization efficacy of the algorithm over the prevailing optimization techniques for the solution of the multimodal, nondifferentiable, highly non-linear, and constrained FIR filter design problems.

A Novel Metric for Performance Evaluation of Image Fusion Algorithms

In this paper, we present a novel objective nonreference performance assessment algorithm for image fusion. It takes into account local measurements to estimate how well the important information in the source images is represented by the fused image. The metric is based on the Universal Image Quality Index and uses the similarity between blocks of pixels in the input images and the fused image as the weighting factors for the metrics. Experimental results confirm that the values of the proposed metrics correlate well with the subjective quality of the fused images, giving a significant improvement over standard measures based on mean squared error and mutual information.

Numerical Optimization within Vector of Parameters Estimation in Volatility Models

In this paper usefulness of quasi-Newton iteration procedure in parameters estimation of the conditional variance equation within BHHH algorithm is presented. Analytical solution of maximization of the likelihood function using first and second derivatives is too complex when the variance is time-varying. The advantage of BHHH algorithm in comparison to the other optimization algorithms is that requires no third derivatives with assured convergence. To simplify optimization procedure BHHH algorithm uses the approximation of the matrix of second derivatives according to information identity. However, parameters estimation in a/symmetric GARCH(1,1) model assuming normal distribution of returns is not that simple, i.e. it is difficult to solve it analytically. Maximum of the likelihood function can be founded by iteration procedure until no further increase can be found. Because the solutions of the numerical optimization are very sensitive to the initial values, GARCH(1,1) model starting parameters are defined. The number of iterations can be reduced using starting values close to the global maximum. Optimization procedure will be illustrated in framework of modeling volatility on daily basis of the most liquid stocks on Croatian capital market: Podravka stocks (food industry), Petrokemija stocks (fertilizer industry) and Ericsson Nikola Tesla stocks (information-s-communications industry).