The Effects of Seasonal Variation on the Microbial-N Flow to the Small Intestine and Prediction of Feed Intake in Grazing Karayaka Sheep

The objectives of the present study were to estimate the microbial-N flow to the small intestine and to predict the digestible organic matter intake (DOMI) in grazing Karayaka sheep based on urinary excretion of purine derivatives (xanthine, hypoxanthine, uric acid, and allantoin) by the use of spot urine sampling under field conditions. In the trial, 10 Karayaka sheep from 2 to 3 years of age were used. The animals were grazed in a pasture for ten months and fed with concentrate and vetch plus oat hay for the other two months (January and February) indoors. Highly significant linear and cubic relationships (P

Nanofibrous Ion Exchangers

The main goal of this study was to find simple and industrially applicable production of ion exchangers based on nanofibrous polystyrene matrix and characterization of prepared material. Starting polystyrene nanofibers were sulfonated and crosslinked under appropriate conditions at the same time by sulfuric acid. Strongly acidic cation exchanger was obtained in such a way. The polymer matrix was made from polystyrene nanofibers prepared by NanospiderTM technology. Various types postpolymerization reactions and other methods of crosslinking were studied. Greatly different behavior between nano- and microsize materials was observed. The final nanofibrous material was characterized and compared to common granular ion exchangers and available microfibrous ion exchangers. The sorption properties of nanofibrous ion exchangers were compared with the granular ion exchangers. For nanofibrous ion exchangers of comparable ion exchange capacity was observed considerably faster adsorption kinetics.

Nafion Nanofiber Composite Membrane Fabrication for Fuel Cell Applications

A proton exchange membrane has been developed for direct methanol fuel cell (DMFC). The nanofiber network composite membranes were prepared by interconnected network of Nafion (perfuorosulfonic acid) nanofibers that have been embedded in an uncharged and inert polymer matrix, by electro-spinning. The spinning solution of Nafion with a low concentration (1 wt% compared to Nafion) of high molecular weight poly(ethylene oxide), as a carrier polymer. The interconnected network of Nafion nanofibers with average fiber diameter in the range of 160-700nm, were used to make the membranes, with the nanofiber occupying up to 85% of the membrane volume. The matrix polymer was crosslinked with Norland Optical Adhesive 63 under UV. The resulting membranes showed proton conductivity of 0.10 S/cm at 25°C and 80% RH; and methanol permeability of 3.6 x 10-6 cm2/s.

The Impact of E-Learning on Medication Administration of Nursing Students: What Recent Studies Say?

Nurses are responsible for the care and treatment of individuals, as well as health maintenance and education. Medication administration is an important part of health promotion. The administration of a medicine is a common but important clinical procedure for nurses because of its complex structure. Therefore, medication errors are inevitable for nurses or nursing students. Medication errors can cause ineffective treatment, patient’s prolonged hospital stay, disablement or death. Additionally, medication errors affect the global economy adversely by increasing health costs. Hence, preventing or decreasing of medication errors is a critical and essential issue in nursing. Nurse educators are in pursuit of new teaching methods to teach students significance of medication application. In the light of technological developments of this age, e-learning has started to be accepted as an important teaching method. E-learning is the use of electronic media and information and communication technologies in education. It has advantages such as flexibility of time and place, lower costs, faster delivery and lower environmental impact. Students can make their own schedule and decide the learning method. This study is conducted to determine the impact of e-learning on medication administration of nursing students.

An Experimental Investigation on the Droplet Behavior Impacting a Hot Surface above the Leidenfrost Temperature

An appropriate model to predict the size of the droplets resulting from the break-up with the structures will help in a better understanding and modeling of the two-phase flow calculations in the simulation of a reactor core loss-of-coolant accident (LOCA). A droplet behavior impacting on a hot surface above the Leidenfrost temperature was investigated. Droplets of known size and velocity were impacted to an inclined plate of hot temperature, and the behavior of the droplets was observed by a high-speed camera. It was found that for droplets of Weber number higher than a certain value, the higher the Weber number of the droplet the smaller the secondary droplets. The COBRA-TF model over-predicted the measured secondary droplet sizes obtained by the present experiment. A simple model for the secondary droplet size was proposed using the mass conservation equation. The maximum spreading diameter of the droplets was also compared to previous correlations and a fairly good agreement was found. A better prediction of the heat transfer in the case of LOCA can be obtained with the presented model.

Some Considerations on UML Class Diagram Formalisation Approaches

Unified Modelling Language (UML) is a software modelling language that is widely used and accepted. One significant drawback, of which, is that the language lacks formality. This makes carrying out any type of rigorous analysis difficult process. Many researchers attempt to introduce their approaches to formalise UML diagrams. However, it is always hard to decide what language and/or approach to use. Therefore, in this paper, we highlight some of the advantages and disadvantages of number of those approaches. We also try to compare different counterpart approaches. In addition, we draw some guidelines to help in choosing the suitable approach. Special concern is given to the formalisation of the static aspects of UML shown is class diagrams.

Life Cycle Assessment Comparison between Methanol and Ethanol Feedstock for the Biodiesel from Soybean Oil

As the limited availability of petroleum-based fuel has been a major concern, biodiesel is one of the most attractive alternative fuels because it is renewable and it also has advantages over the conventional petroleum-base diesel. At Present, productions of biodiesel generally perform by transesterification of vegetable oils with low molecular weight alcohol, mainly methanol, using chemical catalysts. Methanol is petrochemical product that makes biodiesel producing from methanol to be not pure renewable energy source. Therefore, ethanol as a product produced by fermentation processes. It appears as a potential feed stock that makes biodiesel to be pure renewable alternative fuel. The research is conducted based on two biodiesel production processes by reacting soybean oils with methanol and ethanol. Life cycle assessment was carried out in order to evaluate the environmental impacts and to identify the process alternative. Nine mid-point impact categories are investigated. The results indicate that better performance on abiotic depletion potential (ADP) and acidification potential (AP) are observed in biodiesel production from methanol when compared with biodiesel production from ethanol due to less energy consumption during the production processes. Except for ADP and AP, using methanol as feed stock does not show any advantages over biodiesel from ethanol. The single score method is also included in this study in order to identify the best option between two processes of biodiesel production. The global normalization and weighting factor based on ecotaxes are used and it shows that producing biodiesel form ethanol has less environmental load compare to biodiesel from methanol.

Influence of Fermentation Conditions on Humic Acids Production by Trichoderma viride Using an Oil Palm Empty Fruit Bunch as the Substrate

Humic acids (HA) were produced by a Trichoderma viride strain under submerged fermentation in a medium based on the oil palm empty fruit bunch (EFB) and the main variables of the process were optimized by using response surface methodology. A temperature of 40°C and concentrations of 50g/L EFB, 5.7g/L potato peptone and 0.11g/L (NH4)2SO4 were the optimum levels of the variables that maximize the HA production, within the physicochemical and biological limits of the process. The optimized conditions led to an experimental HA concentration of 428.4±17.5 mg/L, which validated the prediction from the statistical model of 412.0mg/L. This optimization increased about 7–fold the HA production previously reported in the literature. Additionally, the time profiles of HA production and fungal growth confirmed our previous findings that HA production preferably occurs during fungal sporulation. The present study demonstrated that T. viride successfully produced HA via the submerged fermentation of EFB and the process parameters were successfully optimized using a statistics-based response surface model. To the best of our knowledge, the present work is the first report on the optimization of HA production from EFB by a biotechnological process, whose feasibility was only pointed out in previous works.

Effect of Ripening Conditions and Storage Time on Oxidative and Sensory Stability of Petrovská Klobása Sausage

The influence of ripening conditions (traditional and industrial) on oxidative and sensory stability of dry fermented sausage (Petrovská klobása), during 7 months of storage, was investigated. During the storage period the content of free fatty acids was significantly higher (P

Cultural Production and Urban Regeneration: The Case Study of Amphawa District, Thailand

This research aims to study the role of cultural production in urban regeneration and argue that cultural production, if properly used, can play a vital role in reviving cities and create substantial positive impacts to the cities. The argument can be elucidated by the case study of Amphawa, a district in Samutsongkram province, Thailand, as an example of successful use of cultural productions. The conceptual framework is based on the model of culture contributions in regeneration to examine the impacts. The research methodology is qualitative. This study found that cultural productions can revive cities into vibrant ones and exert considerable impacts: physical, social and economic. It is suggested that, despite that there is not one-fit-all model, cultural production can be an important initiative for any city transformation if it is appropriately implemented. The city planners and authorities ought to consider the conditions and factors and design a specific plan to fit the city context and integrated with other planning.

Groundwater Quality Assessment around Nagalkeni Tannery Industrial Belt

The groundwater quality was assessed nearby places of Nagalkeni, Chennai, Tamil Nadu, India. The selected physico-chemical parameters were pH, EC, TDS, total hardness (TH), anions like Ca, Mg, Na and K, and cations like SO4, NO3, Cl2, HCO3, and CO3, and Cr(VI). In order to suit the groundwater for drinking and irrigation purposes, compared the value of selected parameters with the value of selected parameters from BIS drinking water quality standard and irrigation water quality indices. The physico-chemical study of the groundwater systems of selected sites of nearby places of Nagalkeni showed that the groundwater is nearly acidic and mostly oxidizing in nature and hence, water is not suitable for drinking purpose directly. The results of the irrigation indices indicated that the groundwater samples in the study area found to be brackish water, results, groundwater from the study area is also not suitable for irrigation purpose directly, but the groundwater may be used after implementing some suitable treatment techniques.

Designing an Optimal Safe Layout for a Fuel Storage Tanks Farm: Case Study of Jaipur Oil Depot

Storage tank farms are essential industrial facilities to accumulate oil, petrochemicals and gaseous products. Since tank farms contain huge mass of fuel and hazardous materials, they are always targets of serious accidents such as fire, explosion, spill and toxic release which may cause severe impacts on human health, environmental and properties. Although having a safe layout is not able to prevent initiating accidents, however it effectively controls and reduces the adverse impact of such accidents. The aim of this paper is to determine the optimal layout for a storage tank contains different type of hydrocarbon fuels. A quantitative risk assessment is carried out on a selected tank farm in Jaipur, India, with particular attention given to both the consequence modeling and the overall risk assessment using PHAST Software. Various designs of tank layouts are examined taking into consideration several issues of plant operations and maintenance. In all stages of the work, standard guidelines specified by the industry are considered and recommendations are substantiated with simulation results and risk quantification.

Plants and Microorganisms for Phytoremediation of Soils Polluted with Organochlorine Pesticides

The goal of presented work is the development phytoremediation method targeted to cleaning environment polluted with organochlorine pesticides, based on joint application of plants and microorganisms. For this aim the selection of plants and microorganisms with corresponding capabilities towards three organochlorine pesticides (Lindane, DDT and PCP) has been carried out. The tolerance of plants to tested pesticides and induction degree of plant detoxification enzymes by these compounds have been used as main criteria for estimating the applicability of plants in proposed technology. Obtained results show that alfalfa, maize and soybean among tested six plant species have highest tolerance to pesticides. As a result of screening, more than 30 strains from genera Pseudomonas have been selected. As a result of GC analysis of incubation area, 11 active cultures for investigated pesticides are carefully chosen.

Probiotic Properties of Lactic Acid Bacteria Isolated from Fermented Food

The objectives of this study were to isolate LAB from various sources, dietary supplement, Thai traditional fermented food, and freshwater fish and to characterize their potential as probiotic cultures. Out of 1,558 isolates, 730 were identified as LAB based on isolation on MRS agar supplemented with a bromocresol purple indicator&CaCO3 and Gram-positive, catalase- and oxidase-negative characteristics. Eight isolates showed the potential probiotic properties including tolerance to acid, bile salt & heat, proteolytic, amylolytic & lipolytic activities and oxalate-degrading capability. They all showed the antimicrobial activity against some Gram-negative and Gram-positive pathogenic bacteria. Based on 16S rDNA sequence analysis, they were identified as Enterococcus faecalis BT2 & MG30, Leconostoc mesenteroides SW64 and Pediococcus pentosaceous BD33, CF32, NP6, PS34 & SW5. The health beneficial effects and food safety will be further investigated and developed as a probiotic or protective culture used in Nile tilapia belly flap meat fermentation.

Shock Response Analysis of Soil–Structure Systems Induced by Near–Fault Pulses

Shock response analysis of the soil–structure systems induced by near–fault pulses is investigated. Vibration transmissibility of the soil–structure systems is evaluated by shock response spectra (SRS). Medium–to–high rise buildings with different aspect ratios located on different soil types as well as different foundations with respect to vertical load bearing safety factors are studied. Two types of mathematical near–fault pulses, i.e. forward directivity and fling step, with different pulse periods as well as pulse amplitudes are selected as incident ground shock. Linear versus nonlinear soil–structure interaction (SSI) condition are considered alternatively and the corresponding results are compared. The results show that nonlinear SSI is likely to amplify the acceleration responses when subjected to long–period incident pulses with normalized period exceeding a threshold. It is also shown that this threshold correlates with soil type, so that increased shear–wave velocity of the underlying soil makes the threshold period decrease.

LIDAR Obstacle Warning and Avoidance System for Unmanned Aircraft

The availability of powerful eye-safe laser sources and the recent advancements in electro-optical and mechanical beam-steering components have allowed laser-based Light Detection and Ranging (LIDAR) to become a promising technology for obstacle warning and avoidance in a variety of manned and unmanned aircraft applications. LIDAR outstanding angular resolution and accuracy characteristics are coupled to its good detection performance in a wide range of incidence angles and weather conditions, providing an ideal obstacle avoidance solution, which is especially attractive in low-level flying platforms such as helicopters and small-to-medium size Unmanned Aircraft (UA). The Laser Obstacle Avoidance Marconi (LOAM) system is one of such systems, which was jointly developed and tested by SELEX-ES and the Italian Air Force Research and Flight Test Centre. The system was originally conceived for military rotorcraft platforms and, in this paper, we briefly review the previous work and discuss in more details some of the key development activities required for integration of LOAM on UA platforms. The main hardware and software design features of this LOAM variant are presented, including a brief description of the system interfaces and sensor characteristics, together with the system performance models and data processing algorithms for obstacle detection, classification and avoidance. In particular, the paper focuses on the algorithm proposed for optimal avoidance trajectory generation in UA applications.

A Life Cycle Assessment (LCA) of Aluminum Production Process

The production of aluminum alloys and ingots – starting from the processing of alumina to aluminum, and the final cast product – was studied using a Life Cycle Assessment (LCA) approach. The studied aluminum supply chain consisted of a carbon plant, a reduction plant, a casting plant, and a power plant. In the LCA model, the environmental loads of the different plants for the production of 1 ton of aluminum metal were investigated. The impact of the aluminum production was assessed in eight impact categories. The results showed that for all of the impact categories the power plant had the highest impact only in the cases of Human Toxicity Potential (HTP) the reduction plant had the highest impact and in the Marine Aquatic Eco-Toxicity Potential (MAETP) the carbon plant had the highest impact. Furthermore, the impact of the carbon plant and the reduction plant combined was almost the same as the impact of the power plant in the case of the Acidification Potential (AP). The carbon plant had a positive impact on the environment when it come to the Eutrophication Potential (EP) due to the production of clean water in the process. The natural gas based power plant used in the case study had 8.4 times less negative impact on the environment when compared to the heavy fuel based power plant and 10.7 times less negative impact when compared to the hard coal based power plant.

Functionalized PU Foam for Water Filtration

Polyurethane foam is functionalized with Sulfonic acid groups to remove lead ions (Pb2+) from drinking water through a cation exchange process. The synthesis is based on addition polymerization of the -NCO groups of an isocyanate with the –OH groups of a polyol to form the urethane. Toluene-diisocyanateis reacted with Polypropylene glycol to form a linear pre-polymer, which is further polymerized using a chain extender, N, N-bis(2-hydorxyethyl)-2-aminoethane-sulfonic acid (BES). BES acts as a functional group site to exchange Pb2+ ions. A set of experiments was designed to study the effect of various processing parameters on the performance of the synthesized foam. The maximum Pb2+ ion exchange capacity of the foam was found to be 47ppb/g from a 100ppb Pb2+ solution over a period of 60 minutes. A multistage batch filtration process increased the lead removal to 50-54ppb/3g of foam over a period of 90 minutes.

Analyses for Primary Coolant Pump Coastdown Phenomena for Jordan Research and Training Reactor

Flow coastdown phenomena are very important to secure nuclear fuel integrity during loss of off-site power accidents. In this study, primary coolant flow coastdown phenomena are investigated for the Jordan Research and Training Reactor (JRTR) using a simulation software package, Modular Modeling System (MMS). Two MMS models are built. The first one is a simple model to investigate the characteristics of the primary coolant pump only. The second one is a model for a simulation of the Primary Coolant System (PCS) loop, in which all the detailed design data of the JRTR PCS system are modeled, including the geometrical arrangement data. The same design data for a PCS pump are used for both models. Coastdown curves obtained from the two models are compared to study the PCS loop coolant inertia effect on a flow coastdown. Results showed that the loop coolant inertia effect is found to be small in the JRTR PCS loop, i.e., about one second increases in a coastdown half time required to halve the coolant flow rate. The effects of different flywheel inertia on the flow coastdown are also investigated. It is demonstrated that the coastdown half time increases with the flywheel inertia linearly. The designed coastdown half time is proved to be well above the design requirement for the fuel integrity.

An Aerodynamic Design and Analysis of Motor Cycle Helmet with Anti-Glare Visor

Motor cycle accidents have been increased for the past two decades. Helmet can protect the vehicle riders from severe injuries during road accident to certain extent. To design a functional helmet, it is important to analyze the shape of the helmet and visor portion. Hence, an attempt has been made for design and analysis of new helmet by considering the drag pressure and anti-glare visor. The drag pressure resistance presses the helmet against the neck portion of the rider. The shape of an aerodynamic helmet can be able to reduce the drag pressure. The spherical shape and a new aerodynamic shape helmets are designed with help of Pro-E software and the drag pressures were calculated and comparison has been made on the basis of drag pressure.