Effects of Specific Essential Oil Compounds on, Feed Intake, Milk Production, and Ruminal Environment in Dairy Cows during Heat Exposure

The objective of this study was to determine effect of dietary essential oil (EO) compounds, which contained cinnamaldehyde, eugenol, peppermint, coriander, cumin, lemongrass, and an organic carrier on feed intake, milk composition, and rumen fermentation of dairy cows during heat exposure. Thirty-two Holstein cows (days in milk= 60 ± 5) were assigned to one of two treatment groups: a Control and EO fed. The experiment lasted 28 days. Dry matter intake (DMI) was measured daily while and milk production was measured weekly. Our result showed that DMI and milk yield was decreased (P < 0.01) in control cows relative to EO cows. Furthermore, supplementation with EO was associated with a decrease in the molar proportion of propionate (P < 0.05) and increase (P < 0.05) in acetate to propionate ratio. In conclusion, EO supplementations in diets can be useful nutritional modification to alleviate for the decrease DMI and milk production during heat exposure in lactating dairy cows.

DNA Polymorphism Studies of β-Lactoglobulin Gene in Saudi Goats

Domestic goats (Capra hircus) are extremely diverse species and principal animal genetic resource of the developing world. These facilitate a persistent supply of meat, milk, fibre, and skin and are considered as important revenue generators in small pastoral environments. This study aimed to fingerprint β-LG gene at PCR-RFLP level in native Saudi goat breeds (Ardi, Habsi and Harri) in an attempt to have a preliminary image of β-LG genotypic patterns in Saudi breeds as compared to other foreign breeds such as Indian and Egyptian. Also, the Phylogenetic analysis was done to investigate evolutionary trends and similarities among the caprine β-LG gene with that of the other domestic specie, viz. cow, buffalo and sheep. Blood samples were collected from 300 animals (100 for each breed) and genomic DNA was extracted. A fragment of the β-LG gene (427bp) was amplified using specific primers. Subsequent digestion with Sac II restriction endonuclease revealed two alleles (A and B) and three different banding patterns or genotypes i.e. AA, AB and BB. The statistical analysis showed a general trend that β-LG AA genotype had higher milk yield than β-LG AB and β-LG BB genotypes. Nucleotide sequencing of the selected β-LG fragments was done and submitted to GenBank NCBI (Accession No. KJ544248, KJ588275, KJ588276, KJ783455, KJ783456 and KJ874959). Phylogenetic analysis on the basis of nucleotide sequences of native Saudi goats indicated evolutional similarity with the GenBank reference sequences of goat, Bubalus bubalis and Bos taurus. However, the origin of sheep which is the most closely related from the evolutionary point of view, was located some distance away.

Influence of Different Thicknesses on Mechanical and Corrosion Properties of α-C:H Films

The hydrogenated amorphous carbon films (α-C:H) were deposited on p-type Si (100) substrates at different thicknesses by radio frequency plasma enhanced chemical vapor deposition technique (rf-PECVD). Raman spectra display asymmetric diamond-like carbon (DLC) peaks, representative of the α-C:H films. The decrease of intensity ID/IG ratios revealed the sp3 content arise at different thicknesses of the α-C:H films. In terms of mechanical properties, the high hardness and elastic modulus values showed the elastic and plastic deformation behaviors related to sp3 content in amorphous carbon films. Electrochemical properties showed that the α-C:H films exhibited excellent corrosion resistance in air-saturated 3.5 wt.% NaCl solution for pH 2 at room temperature. Thickness increasing affected the small sp2 clusters in matrix, restricting the velocity transfer and exchange of electrons. The deposited α-C:H films exhibited excellent mechanical properties and corrosion resistance.

Quad Tree Decomposition Based Analysis of Compressed Image Data Communication for Lossy and Lossless Using WSN

The Quad Tree Decomposition based performance analysis of compressed image data communication for lossy and lossless through wireless sensor network is presented. Images have considerably higher storage requirement than text. While transmitting a multimedia content there is chance of the packets being dropped due to noise and interference. At the receiver end the packets that carry valuable information might be damaged or lost due to noise, interference and congestion. In order to avoid the valuable information from being dropped various retransmission schemes have been proposed. In this proposed scheme QTD is used. QTD is an image segmentation method that divides the image into homogeneous areas. In this proposed scheme involves analysis of parameters such as compression ratio, peak signal to noise ratio, mean square error, bits per pixel in compressed image and analysis of difficulties during data packet communication in Wireless Sensor Networks. By considering the above, this paper is to use the QTD to improve the compression ratio as well as visual quality and the algorithm in MATLAB 7.1 and NS2 Simulator software tool.

On Supporting a Meta-design Approach in Socio-Technical Ontology Engineering

Many studies have revealed the fact of the complexity of ontology building process. Therefore there is a need for a new approach which one of that addresses the socio-technical aspects in the collaboration to reach a consensus. Meta-design approach is considered applicable as a method in the methodological model of socio-technical ontology engineering. Principles in the meta-design framework are applied in the construction phases of the ontology. A web portal is developed to support the meta-design principles requirements. To validate the methodological model semantic web applications were developed and integrated in the portal and also used as a way to show the usefulness of the ontology. The knowledge based system will be filled with data of Indonesian medicinal plants. By showing the usefulness of the developed ontology in a semantic web application, we motivate all stakeholders to participate in the development of knowledge based system of medicinal plants in Indonesia.

Spatial Data Mining by Decision Trees

Existing methods of data mining cannot be applied on spatial data because they require spatial specificity consideration, as spatial relationships. This paper focuses on the classification with decision trees, which are one of the data mining techniques. We propose an extension of the C4.5 algorithm for spatial data, based on two different approaches Join materialization and Querying on the fly the different tables. Similar works have been done on these two main approaches, the first - Join materialization - favors the processing time in spite of memory space, whereas the second - Querying on the fly different tables- promotes memory space despite of the processing time. The modified C4.5 algorithm requires three entries tables: a target table, a neighbor table, and a spatial index join that contains the possible spatial relationship among the objects in the target table and those in the neighbor table. Thus, the proposed algorithms are applied to a spatial data pattern in the accidentology domain. A comparative study of our approach with other works of classification by spatial decision trees will be detailed.

Recycling of Aggregates from Construction Demolition Wastes in Concrete: Study of Physical and Mechanical Properties

This work is focused on the study of valuation of recycled concrete aggregates, by measuring certain properties of concrete in the fresh and hardened state. In this study, rheological tests and physic-mechanical characterization on concretes and mortars were conducted with recycled concrete whose geometric properties were identified aggregates. Mortars were elaborated with recycled fine aggregate (0/5mm) and concretes were manufactured using recycled coarse aggregates (5/12.5 mm and 12.5/20 mm). First, a study of the mortars was conducted to determine the effectiveness of polycarboxylate superplasticizer on the workability of these and their action deflocculating of the recycled sand. The rheological behavior of mortars based on fine aggregate recycled was characterized. The results confirm that the mortars composed of different fractions of recycled sand (0 /5) have a better mechanical properties (compressive and flexural strength) compared to normal mortar. Also, the mechanical strengths of concretes made with recycled aggregates (5/12.5 mm and 12.5/20 mm), are comparable to those of conventional concrete with conventional aggregates, provided that the implementation can be improved by the addition of a superplasticizer.

Biohydrogen Production from Starch Residues

This review summarizes the potential of starch agroindustrial residues as substrate for biohydrogen production. Types of potential starch agroindustrial residues, recent developments and bio-processing conditions for biohydrogen production will be discussed. Biohydrogen is a clean energy source with great potential to be an alternative fuel, because it releases energy explosively in heat engines or generates electricity in fuel cells producing water as only by-product. Anaerobic hydrogen fermentation or dark fermentation seems to be more favorable, since hydrogen is yielded at high rates and various organic waste enriched with carbohydrates as substrate result in low cost for hydrogen production. Abundant biomass from various industries could be source for biohydrogen production where combination of waste treatment and energy production would be an advantage. Carbohydrate-rich nitrogendeficient solid wastes such as starch residues can be used for hydrogen production by using suitable bioprocess technologies. Alternatively, converting biomass into gaseous fuels, such as biohydrogen is possibly the most efficient way to use these agroindustrial residues.

In-situ Observations Using SEM-EBSD for Bending Deformation in Single-Crystal Materials

To elucidate the material characteristics of single crystals of pure aluminum and copper, the respective relations between crystallographic orientations and microstructures were examined, along with bending and mechanical properties. The texture distribution was also analysed. Bending tests were performed in a SEM apparatus while its behaviors were observed. Some analytical results related to crystal direction maps, inverse pole figures, and textures were obtained from electron backscatter diffraction (EBSD) analyses.

An Approach for Modeling CMOS Gates

A modeling approach for CMOS gates is presented based on the use of the equivalent inverter. A new model for the inverter has been developed using a simplified transistor current model which incorporates the nanoscale effects for the planar technology. Parametric expressions for the output voltage are provided as well as the values of the output and supply current to be compatible with the CCS technology. The model is parametric according the input signal slew, output load, transistor widths, supply voltage, temperature and process. The transistor widths of the equivalent inverter are determined by HSPICE simulations and parametric expressions are developed for that using a fitting procedure. Results for the NAND gate shows that the proposed approach offers sufficient accuracy with an average error in propagation delay about 5%.

Correlation and Prediction of Biodiesel Density

The knowledge of biodiesel density over large ranges of temperature and pressure is important for predicting the behavior of fuel injection and combustion systems in diesel engines, and for the optimization of such systems. In this study, cottonseed oil was transesterified into biodiesel and its density was measured at temperatures between 288 K and 358 K and pressures between 0.1 MPa and 30 MPa, with expanded uncertainty estimated as ±1.6 kg⋅m- 3. Experimental pressure-volume-temperature (pVT) cottonseed data was used along with literature data relative to other 18 biodiesels, in order to build a database used to test the correlation of density with temperarure and pressure using the Goharshadi–Morsali–Abbaspour equation of state (GMA EoS). To our knowledge, this is the first that density measurements are presented for cottonseed biodiesel under such high pressures, and the GMA EoS used to model biodiesel density. The new tested EoS allowed correlations within 0.2 kg·m-3 corresponding to average relative deviations within 0.02%. The built database was used to develop and test a new full predictive model derived from the observed linear relation between density and degree of unsaturation (DU), which depended from biodiesel FAMEs profile. The average density deviation of this method was only about 3 kg.m-3 within the temperature and pressure limits of application. These results represent appreciable improvements in the context of density prediction at high pressure when compared with other equations of state.

The Effects of Sewage Sludge Usage and Manure on Some Heavy Metals Uptake in Savory (Satureja hortensis L.)

In recent decades with the development of technology and lack of food sources, sewage sludge in production of human foods is inevitable. Various sources of municipal and industrial sewage sludge that is produced can provide the requirement of plant nutrients. Soils in arid, semi-arid climate of central Iran that most affected by water drainage, iron and zinc deficiencies, using of sewage sludge is helpful. Therefore, the aim of this study is investigation of sewage sludge and manure application on Ni, Pb and Cd uptake by Savory. An experiment in a randomized complete block design with three replications was performed. Sewage sludge treatments consisted of four levels, control, 15, 30, 80 tons per hectares; the manure was used in four levels of control, 20, 40 and 80 tons per hectare. Results showed that the wet and dry weights was not affected by sewage sludge using, while, manure has significant effect on them. The effect of sewage sludge on the cadmium and lead concentrations were significant. Interactions of sewage sludge and manure on dry weight values were not significant. Compare mean analysis showed that increasing the amount of sewage sludge had no significant effect on cadmium concentration and it reduced when sewage sludge usage increased. This is probably due to increased plant growth and reduced concentrations of these elements in the plant.

Security Architecture for Cloud Networking: A Survey

In the cloud computing hierarchy IaaS is the lowest layer, all other layers are built over it. Thus it is the most important layer of cloud and requisite more importance. Along with advantages IaaS faces some serious security related issue. Mainly Security focuses on Integrity, confidentiality and availability. Cloud computing facilitate to share the resources inside as well as outside of the cloud. On the other hand, cloud still not in the state to provide surety to 100% data security. Cloud provider must ensure that end user/client get a Quality of Service. In this report we describe possible aspects of cloud related security.

Particle Swarm Optimization Based Interconnected Hydro-Thermal AGC System Considering GRC and TCPS

This paper represents performance of particle swarm optimisation (PSO) algorithm based integral (I) controller and proportional-integral controller (PI) for interconnected hydro-thermal automatic generation control (AGC) with generation rate constraint (GRC) and Thyristor controlled phase shifter (TCPS) in series with tie line. The control strategy of TCPS provides active control of system frequency. Conventional objective function integral square error (ISE) and another objective function considering square of derivative of change in frequencies of both areas and change in tie line power are considered. The aim of designing the objective function is to suppress oscillation in frequency deviations and change in tie line power oscillation. The controller parameters are searched by PSO algorithm by minimising the objective functions. The dynamic performance of the controllers I and PI, for both the objective functions, are compared with conventionally optimized I controller.

Experimental Performance and Numerical Simulation of Double Glass Wall

This paper reports the numerical and experimental performances of Double Glass Wall are investigated. Two configurations were considered namely, the Double Clear Glass Wall (DCGW) and the Double Translucent Glass Wall (DTGW). The coupled governing equations as well as boundary conditions are solved using the finite element method (FEM) via COMSOLTM Multiphysics. Temperature profiles and flow field of the DCGW and DTGW are reported and discussed. Different constant heat fluxes were considered as 400 and 800 W.m-2 the corresponding initial condition temperatures were 30.5 and 38.5ºC respectively. The results show that the simulation results are in agreement with the experimental data. Conclusively, the model considered in this study could reasonable be used simulate the thermal and ventilation performance of the DCGW and DTGW configurations.

Efficiency of Wood Vinegar Mixed with Some Plants Extract against the Housefly (Musca domestica L.)

The efficiency of wood vinegar mixed with each individual of three plants extract such as: citronella grass (Cymbopogon nardus), neem seed (Azadirachta indica A. Juss), and yam bean seed (Pachyrhizus erosus Urb.) were tested against the second instar larvae of housefly (Musca domestica L.). Steam distillation was used for extraction of the citronella grass while neem and yam bean were simple extracted by fermentation with ethyl alcohol. Toxicity test was evaluated in laboratory based on two methods of larvicidal bioassay: topical application method (contact poison) and feeding method (stomach poison). Larval mortality was observed daily and larval survivability was recorded until the survived larvae developed to pupae and adults. The study resulted that treatment of wood vinegar mixed with citronella grass showed the highest larval mortality by topical application method (50.0%) and by feeding method (80.0%). However, treatment of mixed wood vinegar and neem seed showed the longest pupal duration to 25 day and 32 days for topical application method and feeding method respectively. Additional, larval duration on treated M. domestica larvae was extended to 13 days for topical application method and 11 days for feeding method. Thus, the feeding method gave higher efficiency compared with the topical application method.

Influence of Thermal Cycle on Temperature Dependent Process Parameters Involved in GTA Welded High Carbon Steel Joints

In this research article a comprehensive investigation has been carried out to determine the effect of thermal cycle on temperature dependent process parameters developed during gas tungsten arc (GTA) welding of high carbon (AISI 1090) steel butt joints. An experiment based thermal analysis has been performed to obtain the thermal history. We have focused on different thermophysical properties such as thermal conductivity, heat transfer coefficient and cooling rate. Angular torch model has been utilized to find out the surface heat flux and its variation along the fusion zone as well as along the longitudinal direction from fusion boundary. After welding and formation of weld pool, heat transfer coefficient varies rapidly in the vicinity of molten weld bead and heat affected zone. To evaluate the heat transfer coefficient near the fusion line and near the rear end of the plate (low temperature region), established correlation has been implemented and has been compared with empirical correlation which is noted as coupled convective and radiation heat transfer coefficient. Change in thermal conductivity has been visualized by analytical model of moving point heat source. Rate of cooling has been estimated by using 2-dimensional mathematical expression of cooling rate and it has shown good agreement with experimental temperature cycle. Thermophysical properties have been varied randomly within 0 -10s time span.

A Comparative Analysis of Different Web Content Mining Tools

Nowadays, the Web has become one of the most pervasive platforms for information change and retrieval. It collects the suitable and perfectly fitting information from websites that one requires. Data mining is the form of extracting data’s available in the internet. Web mining is one of the elements of data mining Technique, which relates to various research communities such as information recovery, folder managing system and simulated intellects. In this Paper we have discussed the concepts of Web mining. We contain generally focused on one of the categories of Web mining, specifically the Web Content Mining and its various farm duties. The mining tools are imperative to scanning the many images, text, and HTML documents and then, the result is used by the various search engines. We conclude by presenting a comparative table of these tools based on some pertinent criteria.

A Spiral Dynamic Optimised Hybrid Fuzzy Logic Controller for a Unicycle Mobile Robot on Irregular Terrains

This paper presents a hybrid fuzzy logic control strategy for a unicycle trajectory following robot on irregular terrains. In literature, researchers have presented the design of path tracking controllers of mobile robots on non-frictional surface. In this work, the robot is simulated to drive on irregular terrains with contrasting frictional profiles of peat and rough gravel. A hybrid fuzzy logic controller is utilised to stabilise and drive the robot precisely with the predefined trajectory and overcome the frictional impact. The controller gains and scaling factors were optimised using spiral dynamics optimisation algorithm to minimise the mean square error of the linear and angular velocities of the unicycle robot. The robot was simulated on various frictional surfaces and terrains and the controller was able to stabilise the robot with a superior performance that is shown via simulation results.

Experimental Investigation on Tsunami Acting on Bridges

Two tragic tsunamis that devastated the west coast of Sumatra Island, Indonesia in 2004 and North East Japan in 2011 had damaged bridges to various extents. Tsunamis have resulted in the catastrophic deterioration of infrastructures i.e. coastal structures, utilities and transportation facilities. A bridge structure performs vital roles to enable people to perform activities related to their daily needs and for development. A damaged bridge needs to be repaired expeditiously. In order to understand the effects of tsunami forces on bridges, experimental tests are carried out to measure the characteristics of hydrodynamic force at various wave heights. Coastal bridge models designed at a 1:40 scale are used in a 24.0 m long hydraulic flume with a cross section of 1.5 m by 2.0 m. The horizontal forces and uplift forces in all cases show that forces increase nonlinearly with increasing wave amplitude.