Biohydrogen Production from Starch Residues

This review summarizes the potential of starch
agroindustrial residues as substrate for biohydrogen production.
Types of potential starch agroindustrial residues, recent developments
and bio-processing conditions for biohydrogen production will be
discussed. Biohydrogen is a clean energy source with great potential
to be an alternative fuel, because it releases energy explosively in
heat engines or generates electricity in fuel cells producing water as
only by-product. Anaerobic hydrogen fermentation or dark
fermentation seems to be more favorable, since hydrogen is yielded
at high rates and various organic waste enriched with carbohydrates
as substrate result in low cost for hydrogen production. Abundant
biomass from various industries could be source for biohydrogen
production where combination of waste treatment and energy
production would be an advantage. Carbohydrate-rich nitrogendeficient
solid wastes such as starch residues can be used for
hydrogen production by using suitable bioprocess technologies.
Alternatively, converting biomass into gaseous fuels, such as
biohydrogen is possibly the most efficient way to use these
agroindustrial residues.





References:
[1] M Ni, D. Y. C. Leung, M. K. H. Leung and K. Sumathy, “An overview
of hydrogen production from biomass”, Fuel Process Technology,vol
87, pp 461-472. 2006.
[2] H. Argun, F. Kargi, I. K. Kapdan and O. Oztekin, “Biohydrogen
production by dark fermentation of wheat powder solution: Effects of
C/N and C/P ratio on hydrogen yield and formation rate”, Int. J.
Hydrogen Energy, vol 33, pp. 1913-1919. 2008.
[3] M. F. Arooj, S. K. Han, S. H. Kim, D. H. Kim and H. S. Shin,
“Continuous biohydrogen production in a CSTR using starch as a
substrate” Int. J. Hydrogen Energy, vol 33, pp. 3289-3294, 2008.
[4] J. Mata-Alvarez, J. Dosta, S. Mace and S. Astals, “Codigestion of solid
wastes: A review of its uses and perspectives including modeling” Crit
Rev Biotechnol, vol. 31, pp. 99-111, 2011.
[5] S. Van Ginkel and S. Sung, “Biohydrogen production as a function of
pH and substrate concentration”, Environ Sci Technol, vol 35, pp. 4726-
4730, 2011.
[6] S. O-Thong, A. Hniman, P. Prasertan and T. Imai “Biohydrogen
production from cassava starch processing wastewater by thermophilic
mixed cultures”, Int. J. Hydrogen Energy, vol 36, pp. 3409-3411, 2011.
[7] I. K. Kapdan and F. Kargi “Biohydrogen production from waste
materials” Enzyme Microbial Technol., vol 38, pp. 569-582, 2006.
[8] K. Y. Show, Z. P. Zhang, J. H. Tay, D. T. Liang, D. J. Lee and N. Q.
Ren, “Critical assessment of anaerobic processes for continuous
biohydrogen production from organic wastewater”, Int J Hydrogen
Energy, vol. 35, pp. 13350-13355, 2010.
[9] A. J. Wang, L. F. Gao, N. Q. Ren, J. F. Xu, C. Liu and D. J. Lee.
“Enrichment strategy to select functional consortium from mixed
cultures: consortium from rumen liquor for simultaneous cellulose
degradation and hydrogen production”, Int J Hydrogen Energy, vol. 35,
pp. 13413-13418, 2010.
[10] S. Roychowdhury, D. Cox and M. Levandowsky, “Production of
hydrogen by microbial fermentation”, Int J Hydrogen Energy, vol. 13,
pp. 407-410, 1988.
[11] S. M. Kotay and D Das “Biohydrogen as a renewable energy resourceprospects
and potentials”, Int J Hydrogen Energy, vol. 33, pp. 258-263,
2008.
[12] M. H. Hwang, N. J. Jang, S. H. Hyun and I. S. Kim, “Anaerobic
biohydrogen production from ethanol fermentation: the role of pH”, J
Biotechnol, vol. 111, pp. 297-299, 2004.
[13] M. L. Chong, N. A. A. Rahman, P. L. Yee, S. A. Aziz, R. A. Rahim, Y.
Shirai and M. A. Hassan, “Effects of pH, glucose and iron sulfate
concentration on the yield of biohydrogen by Clostridium butyricum
EB6”, Int J Hydrogen Energy, vol. 34, pp. 8859-8865, 2009.
[14] C. L. Li and H. H. P. Fang “Fermentative hydrogen production from
wastewater and solid wastes by mixed cultures”, Environ Sci Technol,
vol. 37, pp. 1-39, 2007.
[15] Web of Science, accessed September 16, 2014 on
https://webofknowledge.com.
[16] M. L. Chong, V. Sabaratnam, Y. Shirai and M. A. Hassan,
“Biohydrogen production from biomass and industrial wastes by dark
fermentation”, Int J Hydrogen Energy, vol 34, pp. 3277-3287, 2009.
[17] A. Mudhoo, T. Forster-Carneiro and A. Sánchez “Biohydrogen
production and bioprocess enhancement: A review”, Crit Rev
Biotechnol, vol 31, pp. 250-263, 2011.
[18] F. Vendruscolo, F. Koch, L. O. Pitol and J. L. Ninow, “Production of
single cell protein from apple pomace using state solid fermentation”
Rev Brás Tec Agroind, vol. 1, pp. 53-57, 2007.
[19] F. Vendruscolo, P. M. Albuquerque, F. Streit, E. Espósito and J. L.
Ninow, “Apple pomace: A versatile substrate for biotechnological
applications”, Crit Rev Biotechnol, vol. 28, pp. 1-12, 2008.
[20] F. Vendruscolo, C. S. Ribeiro, E. Espósito and J. L. Ninow, “Protein
enrichment of apple pomace and use in feed for Nile Tilapia”, Appl
Biochem Biotechnol, vol. 152, pp. 74-87, 2009.
[21] Z. Kádár, T. De Vrije, G. E. Van Noorden, M. A. W. Budde, Z.
Szengyel, K. Réczey and P. A. M, “Claassen. Yields from glucose,
xylose, and paper sludge hydrolysate during hydrogen production by the
extreme thermophile Caldicellulosiruptor saccharolyticus”, Applied
Biochem Biotechnol, vol. 114, pp. 497-508, 2004.
[22] H. Yokoyama, H. Ohmori, M. Waki, A. Ogino and Y. Tanaka,
“Continuous hydrogen production from glucose by using extreme
thermophilic anaerobic microflora”, J Biosci Bioeng, vol. 107, pp. 64-
66, 2009.
[23] J. Masset, S. Hiligsmann, C. Hamilton, L. Beckers, F. Franck and P.
Thonart, “Effect of pH on glucose and starch fermentation in batch and
sequenced-batch mode with a recently isolated strain of hydrogenproducing
Clostridium butyricum CWBI1009”, Int J Hydrogen Energy,
vol. 35, pp. 3371-3378, 2010.
[24] N. Kumar and D. Das, “Enhancement of hydrogen production by
Enterobacter cloacae IIT-BT 08”, Process Biochem, vol. 35, pp. 589-
593, 2000.
[25] Y. Mu, G. Wang and H. Q. Yu, “Response surface methodological
analysis on biohydrogen production by enriched anaerobic cultures”,
Enzyme Microb Technol, vol. 38, pp. 905-913, 2006.
[26] S. Singh, A. K. Sudhakaran, P. M. Sarma, S. Subudhi, A. K. Mandal, G.
Gandham and B. Lal, “Dark fermentative biohydrogen production by
mesophilic bacterial consortia isolated from riverbed sediments”, Int J
Hydrogen Energy, vol. 35, pp. 10645-10652, 2010.
[27] T. Zhang, H. Liu and H. H. P. Fang, “Biohydrogen production from
starch in wastewater under thermophilic condition”, J Environ Manage,
vol. 69, pp. 149-156, 2003.
[28] Y. Akutsu, D. Y. Lee, Y. Z. Chi, Y. Y. Li, H. Harada and H. Q. Yu,
“Thermophilic fermentative hydrogen production from starchwastewater
with bio-granules”, Int J Hydrogen Energy, vol. 34, pp.
5061-5071, 2009.
[29] S. D. Chen, K. S. Lee, Y. C. Lo, W. C. Chen, J. F. Wu, C. Y. Lin and J.
S. Chang, “Batch and continuous biohydrogen production from starch
hydrolysate by Clostridium species”, Int J Hydrogen Energy, vol. 33, pp.
18031812, 2008.
[30] C. H. Cheng, C. H. Hung, K. S. Lee, P. Y. Liau, C. M. Liang and L. H.
Yang LH, “Microbial community structure of a starch-feeding
fermentative hydrogen production reactor operated under different
incubation conditions”, Int J Hydrogen Energy, vol. 33, pp. 5242-5249,
2008.
[31] K. S. Lee, Y. F. Hsu, Y. C. Lo, P. J. Lin, C. Y. Lin and J. S. Chang,
“Exploring optimal environmental factors for fermentative hydrogen
production from starch using mixed anaerobic microflora”, Int J
Hydrogen Energy, vol. 33, pp. 1565-1572, 2008.
[32] H. H. P. Fang, C. Li and T. Zhang, "Acidophilic biohydrogen production
from rice slurry”, Int J Hydrogen Energy, vol 31, pp. 683-692, 2006.
[33] G. Liu and J. Shen, “Effects of culture and medium conditions on
hydrogen production from starch using anaerobic bacteria”, J Biosci
Bioeng, vol. 98, pp. 251-256, 2004.
[34] Y. Fan, Y. Guo, C. Pan and H. Hou, “Bioconversion of aging corn to
biohydrogen by dairy manure compost”, Ind Eng Chem Res, vol. 48, pp.
2493-2498, 2009.
[35] H. Su, J. Cheng, J. Zhou, W. Song and K. Cen, “Improving hydrogen
production from cassava starch by combination of dark and photo
fermentation”, Int J Hydrogen Energy, vol. 34, pp. 1780-1786, 2009.
[36] B. M. Cappelletti, V. Reginatto, E. R. Amante and R. V. Antônio,
“Fermentative production of hydrogen from cassava processing
wastewater by Clostridium acetobutylicum”, Renew Energy, vol. 36, pp.
3367-3372, 2011.
[37] W. Wang, L. Xie, J. Chen, G. Luo and Q. Zhou, “Biohydrogen and
methane production by co-digestion of cassava stillage and excess
sludge under thermophilic condition”, Bioresour Technol, vol. 102, pp.
3833-3839, 2011.
[38] I. Hussy, F. R. Hawkes, R. Dinsdale and D. L. Hawkes, “Continuous
fermentative hydrogen production from a wheat starch coproduct by
mixed microflora”, Biotechnol Bioeng, vol. 84, pp. 619-626, 2003.
[39] H. Argun and F. Kargi, “Bio-hydrogen production from ground wheat
starch by continuous combined fermentation using annular-hybrid
bioreactor”, Int J Hydrogen Energy, vol. 53, pp. 6170-6178, 2010.
[40] N. Nasirian, M. Almassi, S. Minaei and R. Widmann, “Development of
a method for biohydrogen production from wheat straw by dark
fermentation”, Int J Hydrogen Energy, vol. 36, pp. 411-420, 2011.
[41] I. A. Panagiotopoulos, R. R. Bakker, T. de Vrije, E. G. Koukios and P.
A. M. Claassen, “Pretreatment of sweet sorghum bagasse for hydrogen
production by Caldicellulosiruptor saccharolyticus”, Int J Hydrogen
Energy, vol. 35, pp. 7738-7747, 2010.
[42] P. Saraphirom and A. Reungsang, “Optimization of biohydrogen
production from sweet sorghum syrup using statistical methods”, Int J
Hydrogen Energy, vol. 35, pp. 13435-13444, 2010.
[43] X. X. Shi, H. C. Song, C. R. Wang, R. S. Tang, Z. X. Huang, T. R. Gao
and J. Xie, “Enhanced bio-hydrogen production from sweet sorghum
stalk with alkalization pretreatment by mixed anaerobic cultures”, Int J
Energy Res, vol. 34, pp. 662-672, 2010.
[44] H. Yokoi, A. Saitsu, H. Uchida, J. Hirose, S. Hayashi and Y. Takasaki,
“Microbial hydrogen production from sweet potato starch residue”, J
Biosci Bioeng, vol. 91, pp. 58-63, 2001.
[45] B. F. Belokopytov, K. S. Laurinavichus, T. V. Laurinavichene, M. L.
Ghirardi, M. Seibert and A. A. Tsygankov, “Towards the integration of
dark- and photo-fermentative waste treatment. 2. Optimization of starchdependent
fermentative hydrogen production”, Int J Hydrogen Energy,
vol. 34, pp. 3324-3332, 2009.
[46] R. Hasyim, T. Imai, S. O-Thong and L. Sulistyowati, “Biohydrogen
production from sago starch in wastewater using an enriched
thermophilic mixed culture from hot spring”, Int J Hydrogen Energy,
vol. 14161-14171, 2011.
[47] S. P. Singh, S. C. Srivastava and K. D. Pandey, “Hydrogen production
by Rhodopseudomonas at the expense of vegetable starch, sugarcane
juice and whey”, Int J Hydrogen Energy, vol. 19, pp. 437-440, 1994.
[48] S. Pattra, S. Sangyoka, M. Boonmee and A. Reungsang, “Bio-hydrogen
production from the fermentation of sugarcane bagasse hydrolysate by
Clostridium butyricum”, Int J Hydrogen Energy, vol. 33, pp. 5256-5265,
2008.
[49] G. Davila-Vazquez, C. B. Cota-Navarro, L. M. Rosales-Colunga, A.
León-Rodríguez, E. Razo-Flores, “Continuous biohydrogen production
using cheese whey: Improving the hydrogen production rate”, Int J
Hydrogen Energy, vol. 34, pp. 4296-4304, 2009.
[50] N. Q. Ren, J. Z. Li, B. K. Li, Y. Wang and S. R. Liu, “Biohydrogen
production from molasses by anaerobic fermentation with a pilot-scale
bioreactor system”, Int J Hydrogen Energy, vol. 31, pp. 2147-2157,
2006.
[51] J. Z. Li, B. K. Li, G. F. Zhu, N. Q. Ren, L. X. Bo and J. G. He,
“Hydrogen production from diluted molasses by anaerobic hydrogen
producing bacteria in an anaerobic baffled reactor (ABR)”, Int J
Hydrogen Energy, vol. 32, pp. 3274-3283, 2007.
[52] C. H. Lay, J. H. Wu, C. L. Hsiao, J. J. Chang, C. C. Chen and C. Y. Lin,
“Biohydrogen production from soluble condensed molasses
fermentation using anaerobic fermentation”, Int J Hydrogen Energy, vol.
35, pp. 13445-13452, 2010.
[53] H. Q. Yu, Z. H. Zhu, W. R. Hu and H. S Zhang, “Hydrogen production
from rice winery wastewater in an upflow anaerobic reactor by using
mixed anaerobic cultures”, Int J Hydrogen Energy, vol. 27, pp. 1359-
1365, 2002.
[54] N. Q. Ren, D. F. Xing, B. E. Rittmann, L. H. Zhao, T. H. Xie and X.
Zhao, “Microbial community structure of ethanol type fermentation in
bio-hydrogen production”, Environ Microbiol, vol. 9, pp. 1112-1125,
2007.
[55] I. Ismail, M. A. Hassan, N. A. A. Rahman and C. S. Soon,
“Thermophilic biohydrogen production from palm oil mill effluent
(POME) using suspended mixed culture”, Biomass Bioenerg, vol. 34,
pp. 42-47, 2010.
[56] R. Lakshmidevi and K. Muthukumar, “Enzymatic saccharification and
fermentation of paper and pulp industry effluent for biohydrogen
production”, Int J Hydrogen Energy, vol. 35, pp. 3389-3400, 2010.
[57] T. A. Ngo, M. S. Kim and J. S. Sim, “High-yield biohydrogen
production from biodiesel manufacturing waste by Thermotoga
neapolitana”, Int J Hydrogen Energy, vol. 36, pp. 5836-5842, 2011.
[58] P. Sinha and A. Pandey, “An evaluative report and challenges for
fermentative biohydrogen production”, Int J Hydrogen Energy, vol. 36,
pp. 7460-7478, 2011.
[59] F. Vendruscolo, C. S. Ribeiro, E. Espósito and J. L. Ninow, “Tratamento
biológico do bagaço de maçã e adição em dietas para alevinos”, Rev
Bras Eng Agríc Ambient, vol. 13, 487-493, 2009.
[60] G. D. Saratale, S. D. Chen, Y. C. Lo, R. G. Saratale and J. S. Chang,
“Outlook of biohydrogen production from lignocellulosic feedstock
using dark fermentation – a review”, J Sci Ind Res, vol. 67, pp. 962-979,
2008.
[61] T. Wakayama and J. Miyake, “Hydrogen from biomass”, in
Biohydrogen II - An approach to environmentally acceptable
technology”, J. Miyake, T. Matsunaga and A. S. Pietro, Ed. New York:
Pergamon, 2001, pp.41-51.
[62] D. J. Lee, K. Y. Show and A. Su, “Dark fermentation on biohydrogen
production: Pure culture”, Bioresour Technol, vol. 102, pp. 8393-8402,
2011.
[63] D. B. Levin, L. Pitt and M. Love, “Biohydrogen production: prospects
and limitations to practical application”, Int J Hydrogen Energy, vol. 29,
pp. 173-185, 2004.
[64] A. Demirbas, “Biohydrogen for future engine fuels demands”, Ed. New
York, USA: Springer; 2009.[65] U. Sen, M. Shakdwipee and R. Banerjee, “Status of biological hydrogen
production”, J Sci Ind Res, vol. 67, pp. 980-993, 2008.
[66] K. W. Jung, D. H. Kim, S. H. Kim and H. S. Shin, “Bioreactor design
form continuous dark fermentative hydrogen production”, Bioresour
Technol, vol. 102, pp. 8612-8620, 2011.
[67] E. Özgür, A. E. Mars, B. Peksel, A. Louwerse, M. Yücel, U. Gündüz, P.
A. M. Claassen and I. Eroglu, “Biohydrogen production from beet
molasses by sequential dark and photofermentation”, Int J Hydrogen
Energy, vol. 35, pp. 511-517, 2010.
[68] Raimbault M, “General and microbiological aspects of solid substrate
fermentation”, Electron. J. Biotechn, vol. 1, 1998.
[69] M. Hashem and S. M. I. Darwish, “Production of bioethanol and
associated by-products from potato starch residue stream by
Saccharomyces cerevisiae”, Biomass Bioeng, vol. 34, pp. 953-959,
2010.
[70] C. H. Wang, W. B. Lu and J. S. Chang, “Feasibility study on
fermentative conversion of raw and hydrolyzed starch to hydrogen using
anaerobic mixed microflora”, Int J Hydrogen Energy, vol. 32, pp. 3849,
3859, 2007.
[71] A. E. Mars, T. Veuskens, M. A. Budde, P. F. N. M. van Doeveren, S. J.
Lips, R. R. Bakker, T. de Vrije and P. A. M. Claassen, “Biohydrogen
production from untreated and hydrolyzed potato steam peels by the
extreme thermophiles Caldicellulosiruptor saccharolyticus and
Thermotoga neapolitana”, Int J Hydrogen Energy, vol. 35, pp. 7730-
7737, 2010.
[72] T. Doi, H. Matsumoto, J. Abe and S. Morita, “Feasibility study on the
application of rhizosphere microflora of rice for the biohydrogen
production from wasted bread”, Int J Hydrogen Energy, vol. 34, pp.
1735-1743, 2009.
[73] T. Noike, “Biological hydrogen production of organic wastesdevelopment
of the two-phase hydrogen production process,” in
International Symposium on Hydrogen and Methane Fermentation of
Organic Waste, 2002; Tokyo, 31-9.
[74] H. Yang and J. Shen, “Effect of ferrous iron concentration on anaerobic
bio-hydrogen production from soluble starch”, Int J Hydrogen Energy,
vol. 31, pp. 21372146, 2006.
[75] Y. Akutsu, Y. Y. Li, M. Tandukar, K. Kubota and H. Harada, “Effects of
seed sludge on fermentative characteristics and microbial community
structures in thermophilic hydrogen fermentation of starch”, Int J
Hydrogen Energy, vol. 33, pp. 6541-6548, 2008.
[76] Y. Akutsu, Y. Y. Li, H. Harada and H. Q. Yu, “Effects of temperature
and substrate concentration on biological hydrogen production from
starch”, Int J Hydrogen Energy, vol. 34, pp. 2558-2566, 2009.
[77] H. Yokoi, S. Mori, J. Hirose, S. Hayashi and Y. Takasaki, “H2
production from starch by a mixed culture of Clostridium butyricum and
Rhodobacter sp M-19”, Biotechnol Lett, vol. 20, pp. 895-899, 1998.
[78] H. S. Jayasinghearachchi, S. Singh, P. M. Sarma, A. Aginihotri and B.
Lal, “Fermentative hydrogen production by new marine Clostridium
amygdallinum strain C9 isolated from offshore crude oil pipeline”, Int J
Hydrogen Energy, vol. 35, pp. 6665-6673, 2010.
[79] H. Yokoi, T. Tokushige, J. Hirose, S. Hayashi and Y. Takasaki, “H2
production from starch by a mixed culture of Clostridium butyricum and
Enterobacter aerogenes”, Biotechnol Lett, vol. 20, pp., 143-147, 1998.
[80] P. Perego, B. Fabiano, G. P. Ponzano and E. Palazzi, “Experimental
study of hydrogen kinetics from agroindustrial by-product: optimal
conditions for production and fuel cell feeding”, Bioprocess Eng, vol.
19, pp., 205-2011, 1998.
[81] W. Q. Guo, N. Q. Ren, Z. B. Chen, B. F. Liu, X. J. Wang, W. S. Xiang
and J. Ding, “Simultaneous biohydrogen production and starch
wastewater treatment in an acidogenic expanded granular sludge bed
reactor by mixed culture for long-term operation”, Int J Hydrogen
Energy, vol. 33, pp. 7397-7404, 2008.
[82] H. Yokoi, R. Maki, J. Hirose and S. Hayashi, “Microbial production of
hydrogen from starch-manufacturing wastes”, Biomass Bioenergy, vol.
22, pp. 389-395, 2002.
[83] Y. H. Wang, S. L. Li, I. C. Chen, I. C. Tseng and S. S. Cheng, “A study
of the process control and hydrolytic characteristics in a thermophilic
hydrogen fermentor fed with starch-rich kitchen waste by using
molecular-biological methods and amylase assay”, Int J Hydrogen
Energy, vol. 35, pp. 13004, 13012, 2010.
[84] J. Wei, Z. T. Liu and X. Zhang, “Biohydrogen production from starch
wastewater and application in fuel cell”, Int J Hydrogen Energy, vol. 35,
pp. 2949-2952, 2010.
[85] G. Antonopoulou, I. Ntaikou, H. N. Gavala, I. V. Skiadas, K.
Angelopoulos and G. Lyberatos, “Biohydrogen production from sweet
sorghum biomass using mixed acidogenic cultures and pure cultures of
Ruminococcus albus”, Global NEST J, vol. 9, pp., 144-151, 2007.
[86] H. Argun, F. Kargi, I. K. Kapdan and R. Oztekin, “Batch dark
fermentation of powdered wheat starch to hydrogen gas: Effects of the
initial substrate and biomass concentrations”, Int J Hydrogen Energy,
vol. 33, pp. 6109-6115, 2008.
[87] F. Kargi and S. Ozmihci, “Effects of dark/light bacteria ratio on biohydrogen
production by combined fed-batch fermentation of ground
wheat starch”, Biomass Bioenerg, vol. 34, pp. 869-874, 2010.
[88] A. Cakir, S. Ozmihci and F. Kargi, “Comparison of bio-hydrogen
production from hydrolyzed wheat starch by mesophilic and
thermophilic dark fermentation”, Int J Hydrogen Energy, vol. 34, pp.
13214-13218, 2010.
[89] F. Kargi and Y. Pamukoglu, “Dark fermentation of ground wheat starch
for bio-hydrogen production by fed-batch operation”, Int J Hydrogen
Energy, vol. 34, pp. 2940-2946, 2009.
[90] R. Sagnak and F. Kargi, “Photo-fermentative hydrogen gas production
from dark fermentation effluent of acid hydrolyzed wheat starch with
periodic feeding”, Int J Hydrogen Energy, vol. 36, pp. 4348-4353, 2011.
[91] H. Zhu, A. Stadnyk, M. Béland and P. Seto, “Co-production of hydrogen
and methane from potato waste using a two-stage anaerobic digestion
process”, Bioresour Technol, vol. 99, pp. 5078-5084, 2007.
[92] L. R. Howard, “Lignocellulose Biotechnology: Bioconversion of
lignocellulosic wastes into edible mushrooms,” in: R. C. Ray and O. P.
Ward, Microbial Biotechnology in Horticulture, vol. III. New
Hampshire: Science Publishers; 2007.
[93] N. P. Ghildyal and B. K. Lonsane, “Utilization of cassava fibrous
residue for the manufacture of value added products: an economic
alternative to waste treatment”, Process Biochem, vol. 25, pp. 35-39,
1990.
[94] Y. T. Fan, G. S. Zhang, X. Y. Guo, Y. Xing and M. H. Fan,
“Biohydrogen-production from beer lees biomass by cow dung
compost”, Biomass Bioenerg, vol. 30, pp. 493-496, 2006.
[95] M. Cui, Z. Yuan, X. Zhi and J. Shen, “Optimization of biohydrogen
production from beer lees using anaerobic mixed bacteria”, Int J
Hydrogen Energy, vol. 34, pp. 7971-7978, 2009.
[96] V. Krishan, A. Desa and S. Marylynn, “Biohydrogen generation from
beer brewery wastewater using an anaerobic contact filter”, J Am Soc
Brew Chem, vol. 65, pp.