Impact of Fischer-Tropsch Wax on Ethylene Vinyl Acetate/Waste Crumb Rubber Modified Bitumen: An Energy-Sustainability Nexus

In an energy-intensive world, minimizing energy consumption is paramount to cost saving and reducing the carbon footprint. Improving mixture procedures utilizing warm mix additive Fischer-Tropsch (FT) wax in ethylene vinyl acetate (EVA) and modified bitumen highlights a greener and sustainable approach to modified bitumen. In this study, the impact of FT wax on optimized EVA/waste crumb rubber modified bitumen is assayed with a maximum loading of 2.5%. The rationale of the FT wax loading is to maintain the original maximum loading of EVA in the optimized mixture. The phase change abilities of FT wax enable EVA co-crystallization with the support of the elastomeric backbone of crumb rubber. Less than 1% loading of FT wax worked in the EVA/crumb rubber modified bitumen energy-sustainability nexus. Response surface methodology approach to the mixture design is implemented amongst the different loadings of FT wax, EVA for a consistent amount of crumb rubber and bitumen. Rheological parameters (complex shear modulus, phase angle and rutting parameter) were the factors used as performance indicators of the different optimized mixtures. The low temperature chemistry of the optimized mixtures is analyzed using elementary beam theory and the elastic-viscoelastic correspondence principle. Master curves and black space diagrams are developed and used to predict age-induced cracking of the different long term aged mixtures. Modified binder rheology reveals that the strain response is not linear and that there is substantial re-arrangement of polymer chains as stress is increased, this is based on the age state of the mixture and the FT wax and EVA loadings. Dominance of individual effects is evident over effects of synergy in co-interaction of EVA and FT wax. All-inclusive FT wax and EVA formulations were best optimized in mixture 4 with mixture 7 reflecting increase in ease of workability. Findings show that interaction chemistry of bitumen, crumb rubber EVA, and FT wax is first and second order in all cases involving individual contributions and co-interaction amongst the components of the mixture.

Behavioural-Orientation and Continuity of Informality in Ghana

The expanding informal sector in developing countries and in Ghana in particular from the 1980s has now been aggravated by the growing population and downsizing in both the public and private sectors, with displaced workers finding alternative livelihoods in the informal sector. Youth and graduate unemployment also swell the numbers and further promote the continuity of the sector. Formal workers and institutions facilitate the growth and complicate demarcations between informality within the formal and informal sectors. In spite of its growth and increasing importance, the informal economy does not feature in policy debates and has often been neglected by the Ghana government. The phenomenon has evolved with modernity into myriad unimaginable forms. Indeed, actors within the sector often clash with the interventions provided by policy makers - because neither the operatives nor the activities they perform can be clearly defined. This study uses in-depth interviews to explore the behavioural nature of the informal workers in Ghana to understand how the operatives describe and perceive the sector, and to identify the factors that influence their drive to stay within the sector. This paper concludes that the operatives clearly distinguish between the formal and informal sectors and identify the characteristics and conditions that constitute the informal sector. Other workers are trapped between formality and informality. The findings also enumerate the push and pull factors contributing to the growth of the sector.

A Systematic Approach for Analyzing Multiple Cyber-Physical Attacks on the Smart Grid

In this paper, we evaluate the resilience of the smart grid system in the presence of multiple cyber-physical attacks on its distinct functional components. We discuss attack-defense scenarios and their effect on smart grid resilience. Through contingency simulations in the Network and PowerWorld Simulator, we analyze multiple cyber-physical attacks that propagate from the cyber domain to power systems and discuss how such attacks destabilize the underlying power grid. The analysis of such simulations helps system administrators develop more resilient systems and improves the response of the system in the presence of cyber-physical attacks.

Influence of Shading on a BIPV System’s Performance in an Urban Context: Case Study of BIPV Systems of the Science Center of Complexity Building of the National and Autonomous University of Mexico in Mexico City

The purpose of this paper is to establish the influence of shading on a Building Integrated Photovoltaic (BIPV) system´s performance in an urban context. The PV systems of the Science Center of Complexity (Centro de Ciencias de la Complejidad) Building based in the Main Campus of the National and Autonomous University of Mexico (UNAM) in Mexico City was taken as case study.  The PV systems are placed on the rooftop and on the south façade of the building.  The south-façade PV system, operating as sunshades, consists of two strings:  one at the ground floor and the other one at the first floor.  According to the building’s facility manager, the south-façade PV system generates 42% less electricity per kilowatt peak (kWp) installed than the one on the roof.  The methods applied in this study were Solar Radiation Analysis (SRA) simulations performed with the Insight 360 Plug-in from Revit 2018® and an on-site measurement using specialized tools.  The results of the SRA simulations showed that the shading casted by the PV system placed on the first floor on top of the PV system of the ground floor decreases its solar incident radiation over 50%.  The simulation outcome was compared and validated to the measured data obtained from the on-site measurement.  In conclusion, the loss factor achieved from the shading of the PVs is due to the surroundings and the PV system´s own design.  The south-façade BIPV system’s deficient design generates critical losses on its performance and decreases its profitability.

An Experimental Study of Downstream Structures on the Flow-Induced Vibrations Energy Harvester Performances

This paper presents an experimental investigation for the characteristics of an energy harvesting device exploiting flow-induced vibration in a wind tunnel. A stationary bluff body is connected with a downstream tip body via an aluminium cantilever beam. Various lengths of aluminium cantilever beam and different shapes of downstream tip body are considered. The results show that the characteristics of the energy harvester’s vibration depend on both the length of the aluminium cantilever beam and the shape of the downstream tip body. The highest ratio between vibration amplitude and bluff body diameter was found to be 1.39 for an energy harvester with a symmetrical triangular tip body and L/D1 = 5 at 9.8 m/s of flow speed (Re = 20077). Using this configuration, the electrical energy was extracted with a polyvinylidene fluoride (PVDF) piezoelectric beam with different load resistances, of which the optimal value could be found on each Reynolds number. The highest power output was found to be 3.19 µW, at 9.8 m/s of flow speed (Re = 20077) and 27 MΩ of load resistance.

Projections of Climate Change in the Rain Regime of the Ibicui River Basin

The global concern about climate change has been increasing, since the emission of gases from human activities contributes to the greenhouse effect in the atmosphere, indicating significant impacts to the planet in the coming years. The study of precipitation regime is fundamental for the development of research in several areas. Among them are hydrology, agriculture, and electric sector. Using the climatic projections of the models belonging to the CMIP5, the main objective of the paper was to present an analysis of the impacts of climate change without rainfall in the Uruguay River basin. After an analysis of the results, it can be observed that for the future climate, there is a tendency, in relation to the present climate, for larger numbers of dry events, mainly in the winter months, changing the pluviometric regime for wet summers and drier winters. Given this projected framework, it is important to note the importance of adequate management of the existing water sources in the river basin, since the value of rainfall is reduced for the next years, it may compromise the dynamics of the ecosystems in the region. Facing climate change is fundamental issue for regions and cities all around the world. Society must improve its resilience to phenomenon impacts, and spreading the knowledge among decision makers and citizens is also essential. So, these research results can be subsidies for the decision-making in planning and management of mitigation measures and/or adaptation in south Brazil.

The Difficulties Witnessed by People with Intellectual Disability in Transition to Work in Saudi Arabia

The transition of a student with a disability from school to work is the most crucial phase while moving from the stage of adolescence into early adulthood. In this process, young individuals face various difficulties and challenges in order to accomplish the next venture of life successfully. In this respect, this paper aims to examine the challenges encountered by the individuals with intellectual disabilities in transition to work in Saudi Arabia. For this purpose, this study has undertaken a qualitative research-based methodology; wherein interpretivist philosophy has been followed along with inductive approach and exploratory research design. The data for the research has been gathered with the help of semi-structured interviews, whose findings are analysed with the help of thematic analysis. Semi-structured interviews were conducted with parents of persons with intellectual disabilities, officials, supervisors and specialists of two vocational rehabilitation centres providing training to intellectually disabled students, in addition to that, directors of companies and websites in hiring those individuals. The total number of respondents for the interview was 15. The purposive sampling method was used to select the respondents for the interview. This sampling method is a non-probability sampling method which draws respondents from a known population and allows flexibility and suitability in selecting the participants for the study. The findings gathered from the interview revealed that the lack of awareness among their parents regarding the rights of their children who are intellectually disabled; the lack of adequate communication and coordination between various entities; concerns regarding their training and subsequent employment are the key difficulties experienced by the individuals with intellectual disabilities. Training in programmes such as bookbinding, carpentry, computing, agriculture, electricity and telephone exchange operations were involved as key training programmes. The findings of this study also revealed that information technology and media were playing a significant role in smoothing the transition to employment of individuals with intellectual disabilities. Furthermore, religious and cultural attitudes have been identified to be restricted for people with such disabilities in seeking advantages from job opportunities. On the basis of these findings, it can be implied that the information gathered through this study will serve to be highly beneficial for Saudi Arabian schools/ rehabilitation centres for individuals with intellectual disability to facilitate them in overcoming the problems they encounter during the transition to work.

Characterisation of Wind-Driven Ventilation in Complex Terrain Conditions

The physical effects of upstream flow obstructions such as vegetation on cross-ventilation phenomena of a building are important for issues such as indoor thermal comfort. Modelling such effects in Computational Fluid Dynamics simulations may also be challenging. The aim of this work is to establish the cross-ventilation jet behaviour in such complex terrain conditions as well as to provide guidelines on the implementation of CFD numerical simulations in order to model complex terrain features such as vegetation in an efficient manner. The methodology consists of onsite measurements on a test cell coupled with numerical simulations. It was found that the cross-ventilation flow is highly turbulent despite the very low velocities encountered internally within the test cells. While no direct measurement of the jet direction was made, the measurements indicate that flow tends to be reversed from the leeward to the windward side. Modelling such a phenomenon proves challenging and is strongly influenced by how vegetation is modelled. A solid vegetation tends to predict better the direction and magnitude of the flow than a porous vegetation approach. A simplified terrain model was also shown to provide good comparisons with observation. The findings have important implications on the study of cross-ventilation in complex terrain conditions since the flow direction does not remain trivial, as with the traditional isolated building case.

Optimal Portfolio Selection in a DC Pension with Multiple Contributors and the Impact of Stochastic Additional Voluntary Contribution on the Optimal Investment Strategy

In this paper, we studied the optimal portfolio selection in a defined contribution (DC) pension scheme with multiple contributors under constant elasticity of variance (CEV) model and the impact of stochastic additional voluntary contribution on the investment strategies. We assume that the voluntary contributions are stochastic and also consider investments in a risk free asset and a risky asset to increase the expected returns of the contributing members. We derived a stochastic differential equation which consists of the members’ monthly contributions and the invested fund and obtained an optimized problem with the help of Hamilton Jacobi Bellman equation. Furthermore, we find an explicit solution for the optimal investment strategy with stochastic voluntary contribution using power transformation and change of variables method and the corresponding optimal fund size was obtained. We discussed the impact of the voluntary contribution on the optimal investment strategy with numerical simulations and observed that the voluntary contribution reduces the optimal investment strategy of the risky asset.

Mathematical Description of Functional Motion and Application as a Feeding Mode for General Purpose Assistive Robots

Eating a meal is among the Activities of Daily Living, but it takes a lot of time and effort for people with physical or functional limitations. Dedicated technologies are cumbersome and not portable, while general-purpose assistive robots such as wheelchair-based manipulators are too hard to control for elaborate continuous motion like eating. Eating with such devices has not previously been automated, since there existed no description of a feeding motion for uncontrolled environments. In this paper, we introduce a feeding mode for assistive manipulators, including a mathematical description of trajectories for motions that are difficult to perform manually such as gathering and scooping food at a defined/desired pace. We implement these trajectories in a sequence of movements for a semi-automated feeding mode which can be controlled with a very simple 3-button interface, allowing the user to have control over the feeding pace. Finally, we demonstrate the feeding mode with a JACO robotic arm and compare the eating speed, measured in bites per minute of three eating methods: a healthy person eating unaided, a person with upper limb limitations or disability using JACO with manual control, and a person with limitations using JACO with the feeding mode. We found that the feeding mode allows eating about 5 bites per minute, which should be sufficient to eat a meal under 30min.

Photoimpedance Spectroscopy Analysis of Planar and Nano-Textured Thin-Film Silicon Solar Cells

In impedance spectroscopy (IS) the response of a photo-active device is analysed as a function of ac bias. It is widely applied in a broad class of material systems and devices. It gives access to fundamental mechanisms of operation of solar cells. We have implemented a method of IS where we modulate the light instead of the bias. This scheme allows us to analyze not only carrier dynamics but also impedance of device locally. Here, using this scheme, we have measured the frequency-dependent photocurrent response of the thin-film planar and nano-textured Si solar cells using this method. Photocurrent response is measured in range of 50 Hz to 50 kHz. Bode and Nyquist plots are used to determine characteristic lifetime of both the cells. Interestingly, the carrier lifetime of both planar and nano-textured solar cells depend on back and front contact positions. This is due to either heterogeneity of device or contacts are not optimized. The estimated average lifetime is found to be shorter for the nano-textured cell, which could be due to the influence of the textured interface on the carrier relaxation dynamics.

Wind Farm Power Performance Verification Using Non-Parametric Statistical Inference

Accurate determination of wind turbine performance is necessary for economic operation of a wind farm. At present, the procedure to carry out the power performance verification of wind turbines is based on a standard of the International Electrotechnical Commission (IEC). In this paper, nonparametric statistical inference is applied to designing a simple, inexpensive method of verifying the power performance of a wind turbine. A statistical test is explained, examined, and the adequacy is tested over real data. The methods use the information that is collected by the SCADA system (Supervisory Control and Data Acquisition) from the sensors embedded in the wind turbines in order to carry out the power performance verification of a wind farm. The study has used data on the monthly output of wind farm in the Republic of Macedonia, and the time measuring interval was from January 1, 2016, to December 31, 2016. At the end, it is concluded whether the power performance of a wind turbine differed significantly from what would be expected. The results of the implementation of the proposed methods showed that the power performance of the specific wind farm under assessment was acceptable.

Mixed Convection Enhancement in a 3D Lid-Driven Cavity Containing a Rotating Cylinder by Applying an Artificial Roughness

A numerical investigation of unsteady mixed convection heat transfer in a 3D moving top wall enclosure, which has a central rotating cylinder and uses either artificial roughness on the bottom hot plate or smooth bottom hot plate to study the heat transfer enhancement, is completed for fixed circular cylinder, and anticlockwise and clockwise rotational speeds, -1 ≤ Ω ≤ 1, at Reynolds number of 5000. The top lid-driven wall was cooled, while the other remaining walls that completed obstructed cubic were kept insulated and motionless. A standard k-ε model of Unsteady Reynolds-Averaged Navier-Stokes (URANS) method is involved to deal with turbulent flow. It has been clearly noted that artificial roughness can strongly control the thermal fields and fluid flow patterns. Ultimately, the heat transfer rate has been dramatically increased by involving artificial roughness on the heated bottom wall in the presence of rotating cylinder.

Forced Vibration of a Fiber Metal Laminated Beam Containing a Delamination

Forced vibration problem of a delaminated beam made of fiber metal laminates is studied in this paper. Firstly, a delamination is considered to divide the beam into four sections. The classic beam theory is assumed to dominate each section. The layers on two sides of the delamination are constrained to have the same deflection. This hypothesis approves the conditions of compatibility as well. Consequently, dynamic response of the beam is obtained by the means of differential transform method (DTM). In order to verify the correctness of the results, a model is constructed using commercial software ABAQUS 6.14. A linear spring with constant stiffness takes the effect of contact between delaminated layers into account. The attained semi-analytical outcomes are in great agreement with finite element analysis.

System Security Impact on the Dynamic Characteristics of Measurement Sensors in Smart Grids

Smart grid is a term used to describe the next generation power grid. New challenges such as integration of renewable and decentralized energy sources, the requirement for continuous grid estimation and optimization, as well as the use of two-way flows of energy have been brought to the power gird. In order to achieve efficient, reliable, sustainable, as well as secure delivery of electric power more and more information and communication technologies are used for the monitoring and the control of power grids. Consequently, the need for cybersecurity is dramatically increased and has converged into several standards which will be presented here. These standards for the smart grid must be designed to satisfy both performance and reliability requirements. An in depth investigation of the effect of retrospectively embedded security in existing grids on it’s dynamic behavior is required. Therefore, a retrofitting plan for existing meters is offered, and it’s performance in a test low voltage microgrid is investigated. As a result of this, integration of security measures into measurement architectures of smart grids at the design phase is strongly recommended.

Autonomic Management for Mobile Robot Battery Degradation

The majority of today’s mobile robots are very dependent on battery power. Mobile robots can operate untethered for a number of hours but eventually they will need to recharge their batteries in-order to continue to function. While computer processing and sensors have become cheaper and more powerful each year, battery development has progress very little. They are slow to re-charge, inefficient and lagging behind in the general progression of robotic development we see today. However, batteries are relatively cheap and when fully charged, can supply high power output necessary for operating heavy mobile robots. As there are no cheap alternatives to batteries, we need to find efficient ways to manage the power that batteries provide during their operational lifetime. This paper proposes the use of autonomic principles of self-adaption to address the behavioral changes a battery experiences as it gets older. In life, as we get older, we cannot perform tasks in the same way as we did in our youth; these tasks generally take longer to perform and require more of our energy to complete. Batteries also suffer from a form of degradation. As a battery gets older, it loses the ability to retain the same charge capacity it would have when brand new. This paper investigates how we can adapt the current state of a battery charge and cycle count, to the requirements of a mobile robot to perform its tasks.

Collective Redress in Consumer Protection in South East Europe: Cross-National Comparisons, Issues of Commonality and Difference

In recent decades, there have been significant developments in the European Union in the field of collective consumer redress. South East European countries (SEE) covered by this paper, in line with their EU accession priorities and duties under Stabilisation and Association Agreements, have to harmonize their national laws with the relevant EU acquis for consumer protection (Chapter 28: Health and Consumer). In these countries, only minimal compliance is achieved. SEE countries have introduced rudimentary collective redress mechanisms, with modest enforcement of collective redress and case law. This paper is based on comprehensive interdisciplinary research conducted for SEE countries on common principles for injunctive and compensatory collective redress mechanisms, emphasizing cross-national comparisons, underlining issues of commonality and difference aiming to develop recommendations for an adequate enforcement of collective redress. SEE countries are recognized by the sectoral approach for regulating collective redress contrary to the majority of EU Member States with having adopted horizontal approach to collective redress. In most SEE countries, the laws do not recognize compensatory but only injunctive collective redress in consumer protection. All responsible stakeholders for implementation of collective redress in SEE countries, lack information and awareness on collective redress mechanisms and the way they function in practice. Therefore, specific actions are needed in these countries to make the whole system of collective redress for consumer protection operational and efficient. Taking into consideration the various designated stakeholders in collective redress in each SEE countries, there is a need of their mutual coordination and cooperation in order to develop consumer protection system and policies. By putting into practice the national collective redress mechanisms, effective access to justice for all consumers, the principle of rule of law will be secured and appropriate procedural guarantees to avoid abusive litigation will be ensured.

Improvement of Water Distillation Plant by Using Statistical Process Control System

Water supply and sanitation in Saudi Arabia is portrayed by difficulties and accomplishments. One of the fundamental difficulties is water shortage. With a specific end goal to beat water shortage, significant ventures have been attempted in sea water desalination, water circulation, sewerage, and wastewater treatment. The motivation behind Statistical Process Control (SPC) is to decide whether the execution of a procedure is keeping up an acceptable quality level [AQL]. SPC is an analytical decision-making method. A fundamental apparatus in the SPC is the Control Charts, which follow the inconstancy in the estimations of the item quality attributes. By utilizing the suitable outline, administration can decide whether changes should be made with a specific end goal to keep the procedure in charge. The two most important quality factors in the distilled water which were taken into consideration were pH (Potential of Hydrogen) and TDS (Total Dissolved Solids). There were three stages at which the quality checks were done. The stages were as follows: (1) Water at the source, (2) water after chemical treatment & (3) water which is sent for packing. The upper specification limit, central limit and lower specification limit are taken as per Saudi water standards. The procedure capacity to accomplish the particulars set for the quality attributes of Berain water Factory chose to be focused by the proposed SPC system.

Design Approach to Incorporate Unique Performance Characteristics of Special Concrete

The advancement in various concrete ingredients like plasticizers, additives and fibers, etc. has enabled concrete technologists to develop many viable varieties of special concretes in recent decades. Such various varieties of concrete have significant enhancement in green as well as hardened properties of concrete. A prudent selection of appropriate type of concrete can resolve many design and application issues in construction projects. This paper focuses on usage of self-compacting concrete, high early strength concrete, structural lightweight concrete, fiber reinforced concrete, high performance concrete and ultra-high strength concrete in the structures. The modified properties of strength at various ages, flowability, porosity, equilibrium density, flexural strength, elasticity, permeability etc. need to be carefully studied and incorporated into the design of the structures. The paper demonstrates various mixture combinations and the concrete properties that can be leveraged. The selection of such products based on the end use of structures has been proposed in order to efficiently utilize the modified characteristics of these concrete varieties. The study involves mapping the characteristics with benefits and savings for the structure from design perspective. Self-compacting concrete in the structure is characterized by high shuttering loads, better finish, and feasibility of closer reinforcement spacing. The structural design procedures can be modified to specify higher formwork strength, height of vertical members, cover reduction and increased ductility. The transverse reinforcement can be spaced at closer intervals compared to regular structural concrete. It allows structural lightweight concrete structures to be designed for reduced dead load, increased insulation properties. Member dimensions and steel requirement can be reduced proportionate to about 25 to 35 percent reduction in the dead load due to self-weight of concrete. Steel fiber reinforced concrete can be used to design grade slabs without primary reinforcement because of 70 to 100 percent higher tensile strength. The design procedures incorporate reduction in thickness and joint spacing. High performance concrete employs increase in the life of the structures by improvement in paste characteristics and durability by incorporating supplementary cementitious materials. Often, these are also designed for slower heat generation in the initial phase of hydration. The structural designer can incorporate the slow development of strength in the design and specify 56 or 90 days strength requirement. For designing high rise building structures, creep and elasticity properties of such concrete also need to be considered. Lastly, certain structures require a performance under loading conditions much earlier than final maturity of concrete. High early strength concrete has been designed to cater to a variety of usages at various ages as early as 8 to 12 hours. Therefore, an understanding of concrete performance specifications for special concrete is a definite door towards a superior structural design approach.

Constructal Enhancement of Fins Design Integrated to Phase Change Materials

The latent heat thermal energy storage system is a thrust area of research due to exuberant thermal energy storage potential. The thermal performance of PCM is significantly augmented by installation of the high thermal conductivity fins. The objective of the present study is to obtain optimum size and location of the fins to enhance diffusion heat transfer without altering overall melting time. Hence, the constructal theory is employed to eliminate, resize, and re-position the fins. A numerical code based on conjugate heat transfer coupled enthalpy porosity approached is developed to solve Navier-Stoke and energy equation.The numerical results show that the constructal fin design has enhanced the thermal performance along with the increase in the overall volume of PCM when compared to conventional. The overall volume of PCM is found to be increased by half of total of volume of fins. The elimination and repositioning the fins at high temperature gradient from low temperature gradient is found to be vital.