Knowledge Based Concept Analysis Method using Concept Maps and UML: Security Notion Case

One of the most ancient humankind concerns is knowledge formalization i.e. what a concept is. Concept Analysis, a branch of analytical philosophy, relies on the purpose of decompose the elements, relations and meanings of a concept. This paper aims at presenting a method to make a concept analysis obtaining a knowledge representation suitable to be processed by a computer system using either object-oriented or ontology technologies. Security notion is, usually, known as a set of different concepts related to “some kind of protection". Our method concludes that a more general framework for the concept, despite it is dynamic, is possible and any particular definition (instantiation) depends on the elements used by its construction instead of the concept itself.

Detection of Near Failure Winding due to Deformation in 33/11kV Power Transformer by using Low Voltage Impulse (LVI) Test Method and Validated through Untanking

Power transformer consists of components which are under consistent thermal and electrical stresses. The major component which degrades under these stresses is the paper insulation of the power transformer. At site, lightning impulses and cable faults may cause the winding deformation. In addition, the winding may deform due to impact during transportation. A deformed winding will excite more stress to its insulating paper thus will degrade it. Insulation degradation will shorten the life-span of the transformer. Currently there are two methods of detecting the winding deformation which are Sweep Frequency Response Analysis (SFRA) and Low Voltage Impulse Test (LVI). The latter injects current pulses to the winding and capture the admittance plot. In this paper, a transformer which experienced overheating and arcing was identified, and both SFRA and LVI were performed. Next, the transformer was brought to the factory for untanking. The untanking results revealed that the LVI is more accurate than the SFRA method for this case study.

Evolutionary Techniques for Model Order Reduction of Large Scale Linear Systems

Recently, genetic algorithms (GA) and particle swarm optimization (PSO) technique have attracted considerable attention among various modern heuristic optimization techniques. The GA has been popular in academia and the industry mainly because of its intuitiveness, ease of implementation, and the ability to effectively solve highly non-linear, mixed integer optimization problems that are typical of complex engineering systems. PSO technique is a relatively recent heuristic search method whose mechanics are inspired by the swarming or collaborative behavior of biological populations. In this paper both PSO and GA optimization are employed for finding stable reduced order models of single-input- single-output large-scale linear systems. Both the techniques guarantee stability of reduced order model if the original high order model is stable. PSO method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. Both the methods are illustrated through numerical example from literature and the results are compared with recently published conventional model reduction technique.

Development of Performance Indicators in Operational Level for Pre-hospital EMS in Thailand

The objective of this research is to develop the performance indicators (PIs) in operational level for the Pre-hospital Emergency Medical Service (EMS) system employing in Thailand. This research started with ascertaining the current pre-hospital care system. The team analyzed the strategies of Narerthorn, a government unit under the ministry of public health, and the existing PIs of the pre-hospital care. Afterwards, the current National Strategic Plan of EMS development (2008-2012) of the Emergency Medical Institute of Thailand (EMIT) was considered using strategic analysis to developed Strategy Map (SM) and identified the Success Factors (SFs). The analysis results from strategy map and SFs were used to develop the Performance Indicators (PIs). To verify the set of PIs, the team has interviewed with the relevant practitioners for the possibilities to implement the PIs. To this paper, it was to ascertain that all the developed PIs support the objectives of the strategic plan. Nevertheless, the results showed that the operational level PIs suited only with the first dimension of National Strategic Plan (infrastructure and information technology development). Besides, the SF was the infrastructure development (to contribute the EMS system to people throughout with standard and efficiency both in normally and disaster conditions). Finally, twenty-nine indicators were developed from the analysis results of SM and SFs.

Design of High Torque Elbow Joint for Above Elbow Prosthesis

Above Elbow Prosthesis is one of the most commonly amputated or missing limbs. The research is done for modelling techniques of upper limb prosthesis and design of high torque, light weight and compact in size elbow actuator. The purposed actuator consists of a DC motor, planetary gear set and a harmonic drive. The calculations show that the actuator is good enough to be used in real life powered prosthetic upper limb or rehabilitation exoskeleton.

Electrical Resistivity of Subsurface: Field and Laboratory Assessment

The objective of this paper is to study the electrical resistivity complexity between field and laboratory measurement, in order to improve the effectiveness of data interpretation for geophysical ground resistivity survey. The geological outcrop in Penang, Malaysia with an obvious layering contact was chosen as the study site. Two dimensional geoelectrical resistivity imaging were used in this study to maps the resistivity distribution of subsurface, whereas few subsurface sample were obtained for laboratory advance. In this study, resistivity of samples in original conditions is measured in laboratory by using time domain low-voltage technique, particularly for granite core sample and soil resistivity measuring set for soil sample. The experimentation results from both schemes are studied, analyzed, calibrated and verified, including basis and correlation, degree of tolerance and characteristics of substance. Consequently, the significant different between both schemes is explained comprehensively within this paper.

Concurrent Approach to Data Parallel Model using Java

Parallel programming models exist as an abstraction of hardware and memory architectures. There are several parallel programming models in commonly use; they are shared memory model, thread model, message passing model, data parallel model, hybrid model, Flynn-s models, embarrassingly parallel computations model, pipelined computations model. These models are not specific to a particular type of machine or memory architecture. This paper expresses the model program for concurrent approach to data parallel model through java programming.

An Overview of Islanding Detection Methods in Photovoltaic Systems

The issue of unintentional islanding in PV grid interconnection still remains as a challenge in grid-connected photovoltaic (PV) systems. This paper discusses the overview of popularly used anti-islanding detection methods, practically applied in PV grid-connected systems. Anti-islanding methods generally can be classified into four major groups, which include passive methods, active methods, hybrid methods and communication base methods. Active methods have been the preferred detection technique over the years due to very small non-detected zone (NDZ) in small scale distribution generation. Passive method is comparatively simpler than active method in terms of circuitry and operations. However, it suffers from large NDZ that significantly reduces its performance. Communication base methods inherit the advantages of active and passive methods with reduced drawbacks. Hybrid method which evolved from the combination of both active and passive methods has been proven to achieve accurate anti-islanding detection by many researchers. For each of the studied anti-islanding methods, the operation analysis is described while the advantages and disadvantages are compared and discussed. It is difficult to pinpoint a generic method for a specific application, because most of the methods discussed are governed by the nature of application and system dependent elements. This study concludes that the setup and operation cost is the vital factor for anti-islanding method selection in order to achieve minimal compromising between cost and system quality.

A Novel Arabic Text Steganography Method Using Letter Points and Extensions

This paper presents a new steganography approach suitable for Arabic texts. It can be classified under steganography feature coding methods. The approach hides secret information bits within the letters benefiting from their inherited points. To note the specific letters holding secret bits, the scheme considers the two features, the existence of the points in the letters and the redundant Arabic extension character. We use the pointed letters with extension to hold the secret bit 'one' and the un-pointed letters with extension to hold 'zero'. This steganography technique is found attractive to other languages having similar texts to Arabic such as Persian and Urdu.

Modeling of Pulsatile Blood Flow in a Weak Magnetic Field

Blood pulse is an important human physiological signal commonly used for the understanding of the individual physical health. Current methods of non-invasive blood pulse sensing require direct contact or access to the human skin. As such, the performances of these devices tend to vary with time and are subjective to human body fluids (e.g. blood, perspiration and skin-oil) and environmental contaminants (e.g. mud, water, etc). This paper proposes a simulation model for the novel method of non-invasive acquisition of blood pulse using the disturbance created by blood flowing through a localized magnetic field. The simulation model geometry represents a blood vessel, a permanent magnet, a magnetic sensor, surrounding tissues and air in 2-dimensional. In this model, the velocity and pressure fields in the blood stream are described based on Navier-Stroke equations and the walls of the blood vessel are assumed to have no-slip condition. The blood assumes a parabolic profile considering a laminar flow for blood in major artery near the skin. And the inlet velocity follows a sinusoidal equation. This will allow the computational software to compute the interactions between the magnetic vector potential generated by the permanent magnet and the magnetic nanoparticles in the blood. These interactions are simulated based on Maxwell equations at the location where the magnetic sensor is placed. The simulated magnetic field at the sensor location is found to assume similar sinusoidal waveform characteristics as the inlet velocity of the blood. The amplitude of the simulated waveforms at the sensor location are compared with physical measurements on human subjects and found to be highly correlated.

Pin type Clamping Attachment for Remote Setup of Machining Process

Sharing the manufacturing facility through remote operation and monitoring of a machining process is challenge for effective use the production facility. Several automation tools in term of hardware and software are necessary for successfully remote operation of a machine. This paper presents a prototype of workpiece holding attachment for remote operation of milling process by self configuration the workpiece setup. The prototype is designed with mechanism to reorient the work surface into machining spindle direction with high positioning accuracy. Variety of parts geometry is hold by attachment to perform single setup machining. Pin type with array pattern additionally clamps the workpiece surface from two opposite directions for increasing the machining rigidity. Optimum pins configuration for conforming the workpiece geometry with minimum deformation is determined through hybrid algorithms, Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). Prototype with intelligent optimization technique enables to hold several variety of workpiece geometry which is suitable for machining low of repetitive production in remote operation.

Polyurethane Nanofibers Obtained By Electrospinning Process

Electrospinning is a broadly used technology to obtain polymeric nanofibers ranging from several micrometers down to several hundred nanometers for a wide range of applications. It offers unique capabilities to produce nanofibers with controllable porous structure. With smaller pores and higher surface area than regular fibers, electrospun fibers have been successfully applied in various fields, such as, nanocatalysis, tissue engineering scaffolds, protective clothing, filtration, biomedical, pharmaceutical, optical electronics, healthcare, biotechnology, defense and security, and environmental engineering. In this study, polyurethane nanofibers were obtained under different electrospinning parameters. Fiber morphology and diameter distribution were investigated in order to understand them as a function of process parameters.

A Fiber Optic Interferometric Sensor for Dynamic Measurement

An optical fiber Fabry-Perot interferometer (FFPI) is proposed and demonstrated for dynamic measurements in a mechanical vibrating target. A polishing metal with a low reflectance value adhered to a mechanical vibrator was excited via a function generator at various excitation frequencies. Output interference fringes were generated by modulating the reference and sensing signal at the output arm. A fringe-counting technique was used for interpreting the displacement information on the dedicated computer. The fiber interferometer has been found the capability of the displacement measurements of 1.28 μm – 96.01 μm. A commercial displacement sensor was employed as a reference sensor for investigating the measurement errors from the fiber sensor. A maximum percentage measurement error of approximately 1.59 % was obtained.

A Proposed Technique for Software Development Risks Identification by using FTA Model

Software Development Risks Identification (SDRI), using Fault Tree Analysis (FTA), is a proposed technique to identify not only the risk factors but also the causes of the appearance of the risk factors in software development life cycle. The method is based on analyzing the probable causes of software development failures before they become problems and adversely affect a project. It uses Fault tree analysis (FTA) to determine the probability of a particular system level failures that are defined by A Taxonomy for Sources of Software Development Risk to deduce failure analysis in which an undesired state of a system by using Boolean logic to combine a series of lower-level events. The major purpose of this paper is to use the probabilistic calculations of Fault Tree Analysis approach to determine all possible causes that lead to software development risk occurrence

Artificial Intelligence Model to Predict Surface Roughness of Ti-15-3 Alloy in EDM Process

Conventionally the selection of parameters depends intensely on the operator-s experience or conservative technological data provided by the EDM equipment manufacturers that assign inconsistent machining performance. The parameter settings given by the manufacturers are only relevant with common steel grades. A single parameter change influences the process in a complex way. Hence, the present research proposes artificial neural network (ANN) models for the prediction of surface roughness on first commenced Ti-15-3 alloy in electrical discharge machining (EDM) process. The proposed models use peak current, pulse on time, pulse off time and servo voltage as input parameters. Multilayer perceptron (MLP) with three hidden layer feedforward networks are applied. An assessment is carried out with the models of distinct hidden layer. Training of the models is performed with data from an extensive series of experiments utilizing copper electrode as positive polarity. The predictions based on the above developed models have been verified with another set of experiments and are found to be in good agreement with the experimental results. Beside this they can be exercised as precious tools for the process planning for EDM.

Decision Support System for Suppliers

Supplier selection is a multi criteria decision-making process that comprises tangible and intangible factors. The majority of previous supplier selection techniques do not consider strategic perspective. Besides, uncertainty is one of the most important obstacles in supplier selection. For the first, time in this paper, the idea of the algorithm " Knapsack " is used to select suppliers Moreover, an attempt has to be made to take the advantage of a simple numerical method for solving model .This is an innovation to resolve any ambiguity in choosing suppliers. This model has been tried in the suppliers selected in a competitive environment and according to all desired standards of quality and quantity to show the efficiency of the model, an industry sample has been uses.

Routing Capability and Blocking Analysis of Dynamic ROADM Optical Networks (Category - II) for Dynamic Traffic

Reconfigurable optical add/drop multiplexers (ROADMs) can be classified into three categories based on their underlying switching technologies. Category I consists of a single large optical switch; category II is composed of a number of small optical switches aligned in parallel; and category III has a single optical switch and only one wavelength being added/dropped. In this paper, to evaluate the wavelength-routing capability of ROADMs of category-II in dynamic optical networks,the dynamic traffic models are designed based on Bernoulli, Poisson distributions for smooth and regular types of traffic. Through Analytical and Simulation results, the routing power of cat-II of ROADM networks for two traffic models are determined.

Prediction the Deformation in Upsetting Process by Neural Network and Finite Element

In this paper back-propagation artificial neural network (BPANN) is employed to predict the deformation of the upsetting process. To prepare a training set for BPANN, some finite element simulations were carried out. The input data for the artificial neural network are a set of parameters generated randomly (aspect ratio d/h, material properties, temperature and coefficient of friction). The output data are the coefficient of polynomial that fitted on barreling curves. Neural network was trained using barreling curves generated by finite element simulations of the upsetting and the corresponding material parameters. This technique was tested for three different specimens and can be successfully employed to predict the deformation of the upsetting process

Optimization of Diverter Box Configuration in a V94.2 Gas Turbine Exhaust System using Numerical Simulation

The bypass exhaust system of a 160 MW combined cycle has been modeled and analyzed using numerical simulation in 2D prospective. Analysis was carried out using the commercial numerical simulation software, FLUENT 6.2. All inputs were based on the technical data gathered from working conditions of a Siemens V94.2 gas turbine, installed in the Yazd power plant. This paper deals with reduction of pressure drop in bypass exhaust system using turning vanes mounted in diverter box in order to alleviate turbulent energy dissipation rate above diverter box. The geometry of such turning vanes has been optimized based on the flow pattern at diverter box inlet. The results show that the use of optimized turning vanes in diverter box can improve the flow pattern and eliminate vortices around sharp edges just before the silencer. Furthermore, this optimization could decrease the pressure drop in bypass exhaust system and leads to higher plant efficiency.

Gender Diversity Culture Check: Study of the Influencing Factors of the Organizational Culture on the Number and Acceptance of Women in Leadership Positions in the Aviation Industry in Germany

Under-representation of women in leadership positions" is still a general phenomenon in Germany despite the high number of implemented measures. The under-representation of female executives in the aviation sector is even worse. In this context our research hypothesis is that the representation and acceptance of women in management positions is determined by corporate culture.