A Method for Modeling Multiple Antenna Channels

In this paper we propose a method for modeling the correlation between the received signals by two or more antennas operating in a multipath environment. Considering the maximum excess delay in the channel being modeled, an elliptical region surrounding both transmitter and receiver antennas is produced. A number of scatterers are randomly distributed in this region and scatter the incoming waves. The amplitude and phase of incoming waves are computed and used to obtain statistical properties of the received signals. This model has the distinguishable advantage of being applicable for any configuration of antennas. Furthermore the common PDF (Probability Distribution Function) of received wave amplitudes for any pair of antennas can be calculated and used to produce statistical parameters of received signals.

2D Human Motion Regeneration with Stick Figure Animation Using Accelerometers

This paper explores the opportunity of using tri-axial wireless accelerometers for supervised monitoring of sports movements. A motion analysis system for the upper extremities of lawn bowlers in particular is developed. Accelerometers are placed on parts of human body such as the chest to represent the shoulder movements, the back to capture the trunk motion, back of the hand, the wrist and one above the elbow, to capture arm movements. These sensors placement are carefully designed in order to avoid restricting bowler-s movements. Data is acquired from these sensors in soft-real time using virtual instrumentation; the acquired data is then conditioned and converted into required parameters for motion regeneration. A user interface was also created to facilitate in the acquisition of data, and broadcasting of commands to the wireless accelerometers. All motion regeneration in this paper deals with the motion of the human body segment in the X and Y direction, looking into the motion of the anterior/ posterior and lateral directions respectively.

Evaluation of the Contribution of Starting Pitchers in a Professional Baseball Team by Grey Relational Analysis

The evaluation of the contribution of professional baseball starting pitchers is a complex decision-making problem that includes several quantitative attributes. It is considered a type of multi-attribute or multi-criteria decision making (MADM/MCDM) problem. This study proposes a model using the Grey Relational Analysis (GRA) to evaluate the starting pitcher contribution for teams of the Chinese Professional Baseball League. The GRA calculates the individual grey relational degree of each alternative to the positive ideal alternative. An empirical analysis was conducted to show the use of the model for the starting pitcher contribution problem. The results demonstrate the effectiveness and feasibility of the proposed model.

Design Process and Real-Time Validation of an Innovative Autonomous Mid-Air Flight and Landing System

This paper describes the design process and the realtime validation of an innovative autonomous mid-air flight and landing system developed by the Italian Aerospace Research Center in the framework of the Italian national funded project TECVOL (Technologies for the Autonomous Flight). In the paper it is provided an insight of the whole development process of the system under study. In particular, the project framework is illustrated at first, then the functional context and the adopted design and testing approach are described, and finally the on-ground validation test rig on purpose designed is addressed in details. Furthermore, the hardwarein- the-loop validation of the autonomous mid-air flight and landing system by means of the real-time test rig is described and discussed.

The Impact of Product Package Information on Consumer Behavior toward Genetically Modified Foods

Genetically modified (GM) technology in food production continued to generate controversies. Consumers were concerned with the GM foods about the healthy and environmental risks. While consumers- acceptance was a critical factor affecting how widely this technology be used. According to the research review, consumers- lack of information was one of the reasons to explain consumers- low acceptance toward GM foods. The objective for this study wanted to find out would informative product package affect consumers- behavior toward GM foods. An experiment was designed to investigate consumer behavior toward different product package information. The results indicated that the product package information influenced consumer product trust toward GM foods. Compared with the traceability production system information, the information about the GM rice was approved by authorized organizations could increase consumers product trust in GM foods. Consumers in Taiwan saw the information provided by authorized organizations more credible than other information.

A Novel Cytokine Derived Fusion Tag for Over- Expression of Heterologous Proteins in E. coli

We report a novel fusion tag for expressing recombinant proteins in E. coli. The fusion tag is the C-terminus part of the human GMCSF gene comprising 45 amino acids, which aid in over expression of otherwise non expressible genes. Expression of hIFN a2b with this fusion tag also escapes the requirement of rare codons for expression. This is also a first report of a small fusion tag of human origin having affinity to heparin sepharose column facilitating the purification of fusion protein.

Blind Impulse Response Identification of Frequency Radio Channels: Application to Bran A Channel

This paper describes a blind algorithm for estimating a time varying and frequency selective fading channel. In order to identify blindly the impulse response of these channels, we have used Higher Order Statistics (HOS) to build our algorithm. In this paper, we have selected two theoretical frequency selective channels as the Proakis-s 'B' channel and the Macchi-s channel, and one practical frequency selective fading channel called Broadband Radio Access Network (BRAN A). The simulation results in noisy environment and for different data input channel, demonstrate that the proposed method could estimate the phase and magnitude of these channels blindly and without any information about the input, except that the input excitation is i.i.d (Identically and Independent Distributed) and non-Gaussian.

An Overview of Issues to Consider Before Introducing Performance-Based Road Maintenance Contracting

Road authorities have confronted problems to maintaining the serviceability of road infrastructure systems by using various traditional methods of contracting. As a solution to these problems, many road authorities have started contracting out road maintenance works to the private sector based on performance measures. This contracting method is named Performance-Based Maintenance Contracting (PBMC). It is considered more costeffective than other traditional methods of contracting. It has a substantial success records in many developed and developing countries over the last two decades. This paper discusses and analyses the potential issues to be considered before the introduction of PBMC in a country.

Daily and Seasonal Changes of Air Pollution in Kuwait

This paper focuses on assessment of air pollution in Umm-Alhyman, Kuwait, which is located south to oil refineries, power station, oil field, and highways. The measurements were made over a period of four days in March and July in 2001, 2004, and 2008. The measured pollutants included methanated and nonmethanated hydrocarbons (MHC, NMHC), CO, CO2, SO2, NOX, O3, and PM10. Also, meteorological parameters were measured, which includes temperature, wind speed and direction, and solar radiation. Over the study period, data analysis showed increase in measured SO2, NOX and CO by factors of 1.2, 5.5 and 2, respectively. This is explained in terms of increase in industrial activities, motor vehicle density, and power generation. Predictions of the measured data were made by the ISC-AERMOD software package and by using the ISCST3 model option. Finally, comparison was made between measured data against international standards.

Theoretical and Analytical Approaches for Investigating the Relations between Sediment Transport and Channel Shape

This study investigated the effect of cross sectional geometry on sediment transport rate. The processes of sediment transport are generally associated to environmental management, such as pollution caused by the forming of suspended sediment in the channel network of a watershed and preserving physical habitats and native vegetations, and engineering applications, such as the influence of sediment transport on hydraulic structures and flood control design. Many equations have been proposed for computing the sediment transport, the influence of many variables on sediment transport has been understood; however, the effect of other variables still requires further research. For open channel flow, sediment transport capacity is recognized to be a function of friction slope, flow velocity, grain size, grain roughness and form roughness, the hydraulic radius of the bed section and the type and quantity of vegetation cover. The effect of cross sectional geometry of the channel on sediment transport is one of the variables that need additional investigation. The width-depth ratio (W/d) is a comparative indicator of the channel shape. The width is the total distance across the channel and the depth is the mean depth of the channel. The mean depth is best calculated as total cross-sectional area divided by the top width. Channels with high W/d ratios tend to be shallow and wide, while channels with low (W/d) ratios tend to be narrow and deep. In this study, the effects of the width-depth ratio on sediment transport was demonstrated theoretically by inserting the shape factor in sediment continuity equation and analytically by utilizing the field data sets for Yalobusha River. It was found by utilizing the two approaches as a width-depth ratio increases the sediment transport decreases.

Application of Augmented Reality for Simulation of Robotized Workcell Activity

Augmented Reality (AR) shows great promises for its usage as a tool for simulation and verification of design proposal of new technological systems. Main advantage of augmented reality application usage is possibility of creation and simulation of new technological unit before its realization. This may contribute to increasing of safety and ergonomics and decreasing of economical aspects of new proposed unit. Virtual model of proposed workcell could reveal hidden errors which elimination in later stage of new workcell creation should cause great difficulties. Paper describes process of such virtual model creation and possibilities of its simulation and verification by augmented reality tools.

Diagnostic Evaluation of Urinary Angiogenin (ANG) and Clusterin (CLU) as Biomarker for Bladder Cancer

Bladder carcinoma is an important worldwide health problem. Both cystoscopy and urine cytology used in detecting bladder cancer suffer from drawbacks where cystoscopy is an invasive method and urine cytology shows low sensitivity in low grade tumors. This study validates easier and less time-consuming techniques to evaluate the value of combined use of angiogenin and clusterin in comparison and combination with voided urine cytology in the detection of bladder cancer patients. This study includes malignant (bladder cancer patients, n= 50), benign (n=20) and healthy (n=20) groups. The studied groups were subjected to cystoscopic examination, detection of bilharzial antibodies, urine cytology, and estimation of urinary angiogenin and clusterin by ELISA. The overall sensitivity and specificity were 66% and 75% for angiogenin, 70% and 82.5% for clusterin and 46% and 80% for voided urine cytology. Combined sensitivity of angiogenin and clusterin with urine cytology increased from 82 to 88%. 

Authentic Learning for Computer Network with Mobile Device-Based Hands-On Labware

Computer network courses are essential parts of college computer science curriculum and hands-on networking experience is well recognized as an effective approach to help students understand better about the network concepts, the layered architecture of network protocols, and the dynamics of the networks. However, existing networking labs are usually server-based and relatively cumbersome, which require a certain level of specialty and resource to set up and maintain the lab environment. Many universities/colleges lack the resources and build-ups in this field and have difficulty to provide students with hands-on practice labs. A new affordable and easily-adoptable approach to networking labs is desirable to enhance network teaching and learning. In addition, current network labs are short on providing hands-on practice for modern wireless and mobile network learning. With the prevalence of smart mobile devices, wireless and mobile network are permeating into various aspects of our information society. The emerging and modern mobile technology provides computer science students with more authentic learning experience opportunities especially in network learning. A mobile device based hands-on labware can provide an excellent ‘real world’ authentic learning environment for computer network especially for wireless network study. In this paper, we present our mobile device-based hands-on labware (series of lab module) for computer network learning which is guided by authentic learning principles to immerse students in a real world relevant learning environment. We have been using this labware in teaching computer network, mobile security, and wireless network classes. The student feedback shows that students can learn more when they have hands-on authentic learning experience. 

The Relationship of Anthocyanins with Color of Organically and Conventionally Cultivated Potatoes

Many of the compounds present in potato are important because of their beneficial effects on health, therefore, are highly desirable in the human diet. Potato tubers contain significant amounts of anthocyanins. The aim of this research was to determine the content of anthocyanins and its relationship with the colour of organically and conventionally cultivated potato varieties. In the research eight potato samples of three potato varieties were analyzed on anthocyanins, dry matter content and color. Obtained results show that there was no significant influence on amount of anthocyanins between different cultivation environments (p>0.05) while between varieties – significant difference (p

Morphological Description of Cervical Cell Images for the Pathological Recognition

The tracking allows to detect the tumor affections of cervical cancer, it is particularly complex and consuming time, because it consists in seeking some abnormal cells among a cluster of normal cells. In this paper, we present our proposed computer system for helping the doctors in tracking the cervical cancer. Knowing that the diagnosis of the malignancy is based in the set of atypical morphological details of all cells, herein, we present an unsupervised genetic algorithm for the separation of cell components since the diagnosis is doing by analysis of the core and the cytoplasm. We give also the various algorithms used for computing the morphological characteristics of cells (Ratio core/cytoplasm, cellular deformity, ...) necessary for the recognition of illness.

Local Algorithm for Establishing a Virtual Backbone in 3D Ad Hoc Network

Due to the limited lifetime of the nodes in ad hoc and sensor networks, energy efficiency needs to be an important design consideration in any routing algorithm. It is known that by employing a virtual backbone in a wireless network, the efficiency of any routing scheme for the network can be improved. One common design for routing protocols in mobile ad hoc networks is to use positioning information; we use the node-s geometric locations to introduce an algorithm that can construct the virtual backbone structure locally in 3D environment. The algorithm construction has a constant time.

A Statistical Approach for Predicting and Optimizing Depth of Cut in AWJ Machining for 6063-T6 Al Alloy

In this paper, a set of experimental data has been used to assess the influence of abrasive water jet (AWJ) process parameters in cutting 6063-T6 aluminum alloy. The process variables considered here include nozzle diameter, jet traverse rate, jet pressure and abrasive flow rate. The effects of these input parameters are studied on depth of cut (h); one of most important characteristics of AWJ. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. In the next stage, the proposed model is embedded into a Simulated Annealing (SA) algorithm to optimize the AWJ process parameters. The objective is to determine a suitable set of process parameters that can produce a desired depth of cut, considering the ranges of the process parameters. Computational results prove the effectiveness of the proposed model and optimization procedure.

Optimization of Laser-Induced Breakdown Spectroscopy (LIBS) for Determination of Quantum Dots (Qds) in Liquid Solutions

Here we report on the utilization of Laser-Induced Breakdown Spectroscopy (LIBS) for determination of Quantum Dots (QDs) in liquid solution. The process of optimization of experimental conditions from choosing the carrier medium to application of colloid QDs is described. The main goal was to get the best possible signal to noise ratio. The results obtained from the measurements confirmed the capability of LIBS technique for qualitative and afterwards quantitative determination of QDs in liquid solution.

The Effect of Granule Size on the Digestibility of Wheat Starch Using an in vitro Model

Wheat has a bimodal starch granule population and the dependency of the rate of enzymatic hydrolysis on particle size has been investigated. Ungelatinised wheaten starch granules were separated into two populations by sedimentation and decantation. Particle size was analysed by laser diffraction and morphological characteristics were viewed using SEM. The sedimentation technique though lengthy, gave satisfactory separation of the granules. Samples (10μm and original) were digested with a-amylase using a dialysis model. Granules of 10μm (p10μm. Moreover, the digestion rate was dependent on particle size whereby smaller granules produced higher rate of release. The methodology and results reported here can be used as a basis for further evaluations designed to delay the release of glucose during the digestion of native starches.

BPNN Based Processing for End Effects of HHT

This paper describes a method of signal process applied on an end effects of Hilbert-Huang transform (HHT) to provide an improvement in the reality of spectrum. The method is based on back-propagation network (BPN). To improve the effect, the end extension of the original signal is obtained by back-propagation network. A full waveform including origin and its extension is decomposed by using empirical mode decomposition (EMD) to obtain intrinsic mode functions (IMFs) of the waveform. Then, the Hilbert transform (HT) is applied to the IMFs to obtain the Hilbert spectrum of the waveform. As a result, the method is superiority of the processing of end effect of HHT to obtain the real frequency spectrum of signals.