The Environmental Conservation Behavior of the Applied Health Science Students of Green and Clean University

The aim of this study was to investigate the environmental conservation behavior of the Applied Health Science students of Suranaree University of Technology, a green and clean university. The sample group was 184 Applied Health Science students (medical, nursing, and public health). A questionnaire was used to collect information. The result of the study found that the students had more negative than positive behaviors towards energy, water, and forest conservation. This result can be used as basic information for designing long-term behavior modification activities or research projects on environmental conservation. Thus Applied Health Science students will be encouraged to be conscious and also be a good example of environmental conservation behavior.

Impact of Electronic Word-of-Mouth to Consumer Adoption Process in the Online Discussion Forum: A Simulation Study

Web-based technologies have created numerous opportunities for electronic word-of-mouth (eWOM) communication. There are many factors that affect customer adoption and decisionmaking process. However, only a few researches focus on some factors such as the membership time of forum and propensity to trust. Using a discrete-time event simulation to simulate a diffusion model along with a consumer decision model, the study shows the effect of each factor on adoption of opinions on on-line discussion forum. The purpose of this study is to examine the effect of factor affecting information adoption and decision making process. The model is constructed to test quantitative aspects of each factor. The simulation study shows the membership time and the propensity to trust has an effect on information adoption and purchasing decision. The result of simulation shows that the longer the membership time in the communities and the higher propensity to trust could lead to the higher demand rates because consumers find it easier and faster to trust the person in the community and then adopt the eWOM. Other implications for both researchers and practitioners are provided.

Mobile Qibla and Prayer Time Finder using PDA and External Digital Compass

These days people love to travel around the world. Regardless of their location and time, they especially Muslims still need to perform their prayers. Normally for travelers, they need to bring maps, compass and for Muslim, they even have to bring Qibla pointer when they travel. It is slightly difficult to determine the Qibla direction and to know the time for each prayer. As the technology grows, many PDA equip with maps and GPS to locate their location. In this paper we present a new electronic device called Mobile Qibla and Prayer Time Finder to locate the Qibla direction and to determine each prayer time based on the current user-s location using PDA. This device use PIC microcontroller equipped with digital compass where it will communicate with PDA using Bluetooth technology and display the exact Qibla direction and prayer time automatically at any place in the world. This device is reliable and accurate in determining the Qibla direction and prayer time.

A GPU Based Texture Mapping Technique for 3D Models Using Multi-View Images

Previous the 3D model texture generation from multi-view images and mapping algorithms has issues in the texture chart generation which are the self-intersection and the concentration of the texture in texture space. Also we may suffer from some problems due to the occluded areas, such as inside parts of thighs. In this paper we propose a texture mapping technique for 3D models using multi-view images on the GPU. We do texture mapping directly on the GPU fragment shader per pixel without generation of the texture map. And we solve for the occluded area using the 3D model depth information. Our method needs more calculation on the GPU than previous works, but it has shown real-time performance and previously mentioned problems do not occur.

Alcoholic Extract of Terminalia Arjuna Protects Rabbit Heart against Ischemic-Reperfusion Injury: Role of Antioxidant Enzymes and Heat Shock Protein

The present study was designed to investigate the cardio protective role of chronic oral administration of alcoholic extract of Terminalia arjuna in in-vivo ischemic reperfusion injury and the induction of HSP72. Rabbits, divided into three groups, and were administered with the alcoholic extract of the bark powder of Terminalia arjuna (TAAE) by oral gavage [6.75mg/kg: (T1) and 9.75mg/kg: (T2), 6 days /week for 12 weeks]. In open-chest Ketamine pentobarbitone anaesthetized rabbits, the left anterior descending coronary artery was occluded for 15 min of ischemia followed by 60 min of reperfusion. In the vehicle-treated group, ischemic-reperfusion injury (IRI) was evidenced by depression of global hemodynamic function (MAP, HR, LVEDP, peak LV (+) & (- ) (dP/dt) along with depletion of HEP compounds. Oxidative stress in IRI was evidenced by, raised levels of myocardial TBARS and depletion of endogenous myocardial antioxidants GSH, SOD and catalase. Western blot analysis showed a single band corresponding to 72 kDa in homogenates of hearts from rabbits treated with both the doses. In the alcoholic extract of the bark powder of Terminalia arjuna treatment groups, both the doses had better recovery of myocardial hemodynamic function, with significant reduction in TBARS, and rise in SOD, GSH, catalase were observed. The results of the present study suggest that the alcoholic extract of the bark powder of Terminalia arjuna in rabbit induces myocardial HSP 72 and augments myocardial endogenous antioxidants, without causing any cellular injury and offered better cardioprotection against oxidative stress associated with myocardial IR injury.

Simulated Annealing Algorithm for Data Aggregation Trees in Wireless Sensor Networks and Comparison with Genetic Algorithm

In ad hoc networks, the main issue about designing of protocols is quality of service, so that in wireless sensor networks the main constraint in designing protocols is limited energy of sensors. In fact, protocols which minimize the power consumption in sensors are more considered in wireless sensor networks. One approach of reducing energy consumption in wireless sensor networks is to reduce the number of packages that are transmitted in network. The technique of collecting data that combines related data and prevent transmission of additional packages in network can be effective in the reducing of transmitted packages- number. According to this fact that information processing consumes less power than information transmitting, Data Aggregation has great importance and because of this fact this technique is used in many protocols [5]. One of the Data Aggregation techniques is to use Data Aggregation tree. But finding one optimum Data Aggregation tree to collect data in networks with one sink is a NP-hard problem. In the Data Aggregation technique, related information packages are combined in intermediate nodes and form one package. So the number of packages which are transmitted in network reduces and therefore, less energy will be consumed that at last results in improvement of longevity of network. Heuristic methods are used in order to solve the NP-hard problem that one of these optimization methods is to solve Simulated Annealing problems. In this article, we will propose new method in order to build data collection tree in wireless sensor networks by using Simulated Annealing algorithm and we will evaluate its efficiency whit Genetic Algorithm.

Detection of Oxidative Stress Induced by Mobile Phone Radiation in Tissues of Mice using 8-Oxo-7, 8-Dihydro-2'-Deoxyguanosine as a Biomarker

We investigated oxidative DNA damage caused by radio frequency radiation using 8-oxo-7, 8-dihydro-2'- deoxyguanosine (8-oxodG) generated in mice tissues after exposure to 900 MHz mobile phone radio frequency in three independent experiments. The RF was generated by a Global System for Mobile Communication (GSM) signal generator. The radio frequency field was adjusted to 25 V/m. The whole body specific absorption rate (SAR) was 1.0 W/kg. Animals were exposed to this field for 30 min daily for 30 days. 24 h post-exposure, blood serum, brain and spleen were removed and DNA was isolated. Enzyme-linked immunosorbent assay (ELISA) was used to measure 8-oxodG concentration. All animals survived the whole experimental period. The body weight of animals did not change significantly at the end of the experiment. No statistically significant differences observed in the levels of oxidative stress. Our results are not in favor of the hypothesis that 900 MHz RF induces oxidative damage.

A Training Model for Successful Implementation of Enterprise Resource Planning

It well recognized that one feature that makes a successful company is its ability to successfully align its business goals with its information communication technologies platform. Enterprise Resource Planning (ERP) systems contribute to achieve better performance by integrating various business functions and providing support for information flows. However, the technological systems complexity is known to prevent the business users to exploit in an efficient way the Enterprise Resource Planning Systems (ERP). This paper aims to investigate the role of training in improving the usage of ERP systems. To this end, we have designed an instrument survey to employees of a Norwegian multinational global provider of technology solutions. Based on the analysis of collected data, we have delineated a training model that could be high relevance for both researchers and practitioners as a step towards a better understanding of ERP system implementation.

Harmonic Elimination of Hybrid Multilevel Inverters Using Particle Swarm Optimization

This paper present the harmonic elimination of hybrid multilevel inverters (HMI) which could be increase the number of output voltage level. Total Harmonic Distortion (THD) is one of the most important requirements concerning performance indices. Because of many numbers output levels of HMI, it had numerous unknown variables of eliminate undesired individual harmonic and THD nonlinear equations set. Optimized harmonic stepped waveform (OHSW) is solving switching angles conventional method, but most complicated for solving as added level. The artificial intelligent techniques are deliberation to solve this problem. This paper presents the Particle Swarm Optimization (PSO) technique for solving switching angles to get minimum THD and eliminate undesired individual harmonics of 15-levels hybrid multilevel inverters. Consequently it had many variables and could eliminate numerous harmonics. Both advantages including high level of inverter and Particle Swarm Optimization (PSO) are used as powerful tools for harmonics elimination.

Landslide, Earthquake and Flood Hazard Risks of Izmir Metropolitan City, A Case: Altindag Landslide Areas

Urban disaster risks and vulnerabilities are great problems for Turkey. The annual loss of life and property through disaster in the world-s major metropolitan areas is increasing. Urban concentrations of the poor and less-informed in environmentally fragile locations suffer the impact of disaster disproportionately. Gecekondu (squatter) developments will compound the inherent risks associated with high-density environments, in appropriate technologies, and inadequate infrastructure. On the other hand, there are many geological disadvantages such as sitting on top of active tectonic plate boundaries, and why having avalanche, flood, and landslide and drought prone areas in Turkey. However, this natural formation is inevitable; the only way to survive in such a harsh geography is to be aware of importance of these natural events and to take political and physical measures. The main aim of this research is to bring up the magnitude of natural hazard risks in Izmir built-up zone, not being taken into consideration adequately. Because the dimensions of the peril are not taken seriously enough, the natural hazard risks, which are commonly well known, are not considered important or they are being forgotten after some time passes. Within this research, the magnitude of natural hazard risks for Izmir is being presented in the scope of concrete and local researches over Izmir risky areas.

Solubility of Organics in Water and Silicon Oil: A Comparative Study

The aim of this study was to compare the solubility of selected volatile organic compounds in water and silicon oil using the simple static headspace method. The experimental design allowed equilibrium achievement within 30 – 60 minutes. Infinite dilution activity coefficients and Henry-s law constants for various organics representing esters, ketones, alkanes, aromatics, cycloalkanes and amines were measured at 303K. The measurements were reproducible with a relative standard deviation and coefficient of variation of 1.3x10-3 and 1.3 respectively. The static determined activity coefficients using shaker flasks were reasonably comparable to those obtained using the gas liquid - chromatographic technique and those predicted using the group contribution methods mainly the UNIFAC. Silicon oil chemically known as polydimethysiloxane was found to be better absorbent for VOCs than water which quickly becomes saturated. For example the infinite dilution mole fraction based activity coefficients of hexane is 0.503 and 277 000 in silicon oil and water respectively. Thus silicon oil gives a superior factor of 550 696. Henry-s law constants and activity coefficients at infinite dilution play a significant role in the design of scrubbers for abatement of volatile organic compounds from contaminated air streams. This paper presents the phase equilibrium of volatile organic compounds in very dilute aqueous and polymeric solutions indicating the movement and fate of chemical in air and solvent. The successful comparison of the results obtained here and those obtained using other methods by the same authors and in literature, means that the results obtained here are reliable.

Distributed Detection and Optimal Traffic-blocking of Network Worms

Despite the recent surge of research in control of worm propagation, currently, there is no effective defense system against such cyber attacks. We first design a distributed detection architecture called Detection via Distributed Blackholes (DDBH). Our novel detection mechanism could be implemented via virtual honeypots or honeynets. Simulation results show that a worm can be detected with virtual honeypots on only 3% of the nodes. Moreover, the worm is detected when less than 1.5% of the nodes are infected. We then develop two control strategies: (1) optimal dynamic trafficblocking, for which we determine the condition that guarantees minimum number of removed nodes when the worm is contained and (2) predictive dynamic traffic-blocking–a realistic deployment of the optimal strategy on scale-free graphs. The predictive dynamic traffic-blocking, coupled with the DDBH, ensures that more than 40% of the network is unaffected by the propagation at the time when the worm is contained.

Experimental Evaluation of Drilling Damage on the Strength of Cores Extracted from RC Buildings

Concrete strength evaluated from compression tests on cores is affected by several factors causing differences from the in-situ strength at the location from which the core specimen was extracted. Among the factors, there is the damage possibly occurring during the drilling phase that generally leads to underestimate the actual in-situ strength. In order to quantify this effect, in this study two wide datasets have been examined, including: (i) about 500 core specimens extracted from Reinforced Concrete existing structures, and (ii) about 600 cube specimens taken during the construction of new structures in the framework of routine acceptance control. The two experimental datasets have been compared in terms of compression strength and specific weight values, accounting for the main factors affecting a concrete property, that is type and amount of cement, aggregates' grading, type and maximum size of aggregates, water/cement ratio, placing and curing modality, concrete age. The results show that the magnitude of the strength reduction due to drilling damage is strongly affected by the actual properties of concrete, being inversely proportional to its strength. Therefore, the application of a single value of the correction coefficient, as generally suggested in the technical literature and in structural codes, appears inappropriate. A set of values of the drilling damage coefficient is suggested as a function of the strength obtained from compressive tests on cores.

Analysis of Catalytic Properties of Ni3Al Thin Foils for the Methanol and Hexane Decomposition

Intermetallic Ni3Al – based alloys belong to a group of advanced materials characterized by good chemical and physical properties (such as structural stability, corrosion resistance) which offer advenced technological applications. The paper presents the study of catalytic properties of Ni3Al foils (thickness approximately 50 &m) in the methanol and hexane decomposition. The egzamined material posses microcrystalline structure without any additional catalysts on the surface. The better catalytic activity of Ni3Al foils with respect to quartz plates in both methanol and hexane decomposition was confirmed. On thin Ni3Al foils the methanol conversion reaches approximately 100% above 480 oC while the hexane conversion reaches approximately 100% (98,5%) at 500 oC. Deposit formed during the methanol decomposition is built up of carbon nanofibers decorated with metal-like nanoparticles.

Retrieval of Relevant Visual Data in Selected Machine Vision Tasks: Examples of Hardware-based and Software-based Solutions

To illustrate diversity of methods used to extract relevant (where the concept of relevance can be differently defined for different applications) visual data, the paper discusses three groups of such methods. They have been selected from a range of alternatives to highlight how hardware and software tools can be complementarily used in order to achieve various functionalities in case of different specifications of “relevant data". First, principles of gated imaging are presented (where relevance is determined by the range). The second methodology is intended for intelligent intrusion detection, while the last one is used for content-based image matching and retrieval. All methods have been developed within projects supervised by the author.

Design and Implementation of Secure Electronic Payment System (Client)

Secure electronic payment system is presented in this paper. This electronic payment system is to be secure for clients such as customers and shop owners. The security architecture of the system is designed by RC5 encryption / decryption algorithm. This eliminates the fraud that occurs today with stolen credit card numbers. The symmetric key cryptosystem RC5 can protect conventional transaction data such as account numbers, amount and other information. This process can be done electronically using RC5 encryption / decryption program written by Microsoft Visual Basic 6.0. There is no danger of any data sent within the system being intercepted, and replaced. The alternative is to use the existing network, and to encrypt all data transmissions. The system with encryption is acceptably secure, but that the level of encryption has to be stepped up, as computing power increases. Results In order to be secure the system the communication between modules is encrypted using symmetric key cryptosystem RC5. The system will use simple user name, password, user ID, user type and cipher authentication mechanism for identification, when the user first enters the system. It is the most common method of authentication in most computer system.

Confirming the Identity of the Individual Using Remote Assessment in E-learning

One major issue that is regularly cited as a block to the widespread use of online assessments in eLearning, is that of the authentication of the student and the level of confidence that an assessor can have that the assessment was actually completed by that student. Currently, this issue is either ignored, in which case confidence in the assessment and any ensuing qualification is damaged, or else assessments are conducted at central, controlled locations at specified times, losing the benefits of the distributed nature of the learning programme. Particularly as we move towards constructivist models of learning, with intentions towards achieving heutagogic learning environments, the benefits of a properly managed online assessment system are clear. Here we discuss some of the approaches that could be adopted to address these issues, looking at the use of existing security and biometric techniques, combined with some novel behavioural elements. These approaches offer the opportunity to validate the student on accessing an assessment, on submission, and also during the actual production of the assessment. These techniques are currently under development in the DECADE project, and future work will evaluate and report their use..

Environmental Analysis of the Zinc Oxide Nanophotocatalyst Synthesis

Nanophotocatalysts such as titanium (TiO2), zinc (ZnO), and iron (Fe2O3) oxides can be used in organic pollutants oxidation, and in many other applications. But among the challenges for technological application (scale-up) of the nanotechnology scientific developments two aspects are still little explored: research on environmental risk of the nanomaterials preparation methods, and the study of nanomaterials properties and/or performance variability. The environmental analysis was performed for six different methods of ZnO nanoparticles synthesis, and showed that it is possible to identify the more environmentally compatible process even at laboratory scale research. The obtained ZnO nanoparticles were tested as photocatalysts, and increased the degradation rate of the Rhodamine B dye up to 30 times.

Modeling “Web of Trust“ with Web 2.0

“Web of Trust" is one of the recognized goals for Web 2.0. It aims to make it possible for the people to take responsibility for what they publish on the web, including organizations, businesses and individual users. These objectives, among others, drive most of the technologies and protocols recently standardized by the governing bodies. One of the great advantages of Web infrastructure is decentralization of publication. The primary motivation behind Web 2.0 is to assist the people to add contents for Collective Intelligence (CI) while providing mechanisms to link content with people for evaluations and accountability of information. Such structure of contents will interconnect users and contents so that users can use contents to find participants and vice versa. This paper proposes conceptual information storage and linking model, based on decentralized information structure, that links contents and people together. The model uses FOAF, Atom, RDF and RDFS and can be used as a blueprint to develop Web 2.0 applications for any e-domain. However, primary target for this paper is online trust evaluation domain. The proposed model targets to assist the individuals to establish “Web of Trust" in online trust domain.

Bi-Criteria Latency Optimization of Intra-and Inter-Autonomous System Traffic Engineering

Traffic Engineering (TE) is the process of controlling how traffic flows through a network in order to facilitate efficient and reliable network operations while simultaneously optimizing network resource utilization and traffic performance. TE improves the management of data traffic within a network and provides the better utilization of network resources. Many research works considers intra and inter Traffic Engineering separately. But in reality one influences the other. Hence the effective network performances of both inter and intra Autonomous Systems (AS) are not optimized properly. To achieve a better Joint Optimization of both Intra and Inter AS TE, we propose a joint Optimization technique by considering intra-AS features during inter – AS TE and vice versa. This work considers the important criterion say latency within an AS and between ASes. and proposes a Bi-Criteria Latency optimization model. Hence an overall network performance can be improved by considering this jointoptimization technique in terms of Latency.