Gas Flow Rate Identification in Biomass Power Plants by Response Surface Method

The utilize of renewable energy sources becomes more crucial and fascinatingly, wider application of renewable energy devices at domestic, commercial and industrial levels is not only affect to stronger awareness but also significantly installed capacities. Moreover, biomass principally is in form of woods and converts to be energy for using by humans for a long time. Gasification is a process of conversion of solid carbonaceous fuel into combustible gas by partial combustion. Many gasified models have various operating conditions because the parameters kept in each model are differentiated. This study applied the experimental data including three inputs variables including biomass consumption; temperature at combustion zone and ash discharge rate and gas flow rate as only one output variable. In this paper, response surface methods were applied for identification of the gasified system equation suitable for experimental data. The result showed that linear model gave superlative results.

Regular Data Broadcasting Plan with Grouping in Wireless Mobile Environment

The broadcast problem including the plan design is considered. The data are inserted and numbered at predefined order into customized size relations. The server ability to create a full, regular Broadcast Plan (RBP) with single and multiple channels after some data transformations is examined. The Regular Geometric Algorithm (RGA) prepares a RBP and enables the users to catch their items avoiding energy waste of their devices. Moreover, the Grouping Dimensioning Algorithm (GDA) based on integrated relations can guarantee the discrimination of services with a minimum number of channels. This last property among the selfmonitoring, self-organizing, can be offered by servers today providing also channel availability and less energy consumption by using smaller number of channels. Simulation results are provided.

Effects of Solar Absorption Coefficient of External Wall on Building Energy Consumption

The principle concern of this paper is to determine the impact of solar absorption coefficient of external wall on building energy consumption. Simulations were carried out on a typical residential building by using the simulation Toolkit DeST-h. Results show that reducing solar absorption coefficient leads to a great reduction in building energy consumption and thus light-colored materials are suitable.

Value Engineering and Its Effect in Reduction of Industrial Organization Energy Expenses

The review performed on the condition of energy consumption & rate in Iran, shows that unfortunately the subject of optimization and conservation of energy in active industries of country lacks a practical & effective method and in most factories, the energy consumption and rate is more than in similar industries of industrial countries. The increasing demand of electrical energy and the overheads which it imposes on the organization, forces companies to search for suitable approaches to optimize energy consumption and demand management. Application of value engineering techniques is among these approaches. Value engineering is considered a powerful tool for improving profitability. These tools are used for reduction of expenses, increasing profits, quality improvement, increasing market share, performing works in shorter durations, more efficient utilization of sources & etc. In this article, we shall review the subject of value engineering and its capabilities for creating effective transformations in industrial organizations, in order to reduce energy costs & the results have been investigated and described during a case study in Mazandaran wood and paper industries, the biggest consumer of energy in north of Iran, for the purpose of presenting the effects of performed tasks in optimization of energy consumption by utilizing value engineering techniques in one case study.

Air Conditioning Energy Saving by Rooftop Greenery System in Subtropical Climate in Australia

The benefits of rooftop greenery systems (such as energy savings, reduction of greenhouse gas emission for mitigating climate change and maintaining sustainable development, indoor temperature control etc.) in buildings are well recognized, however there remains very little research conducted for quantifying the benefits in subtropical climates such as in Australia. This study mainly focuses on measuring/determining temperature profile and air conditioning energy savings by implementing rooftop greenery systems in subtropical Central Queensland in Australia. An experimental set-up was installed at Rockhampton campus of Central Queensland University, where two standard shipping containers (6m x 2.4m x 2.4m) were converted into small offices, one with green roof and one without. These were used for temperature, humidity and energy consumption data collection. The study found that an energy savings of up to 11.70% and temperature difference of up to 4°C can be achieved in March in subtropical Central Queensland climate in Australia. It is expected that more energy can be saved in peak summer days (December/February) as temperature difference between green roof and non-green roof is higher in December- February.

The Significance of Embodied Energy in Certified Passive Houses

Certifications such as the Passive House Standard aim to reduce the final space heating energy demand of residential buildings. Space conditioning, notably heating, is responsible for nearly 70% of final residential energy consumption in Europe. There is therefore significant scope for the reduction of energy consumption through improvements to the energy efficiency of residential buildings. However, these certifications totally overlook the energy embodied in the building materials used to achieve this greater operational energy efficiency. The large amount of insulation and the triple-glazed high efficiency windows require a significant amount of energy to manufacture. While some previous studies have assessed the life cycle energy demand of passive houses, including their embodied energy, these rely on incomplete assessment techniques which greatly underestimate embodied energy and can lead to misleading conclusions. This paper analyses the embodied and operational energy demands of a case study passive house using a comprehensive hybrid analysis technique to quantify embodied energy. Results show that the embodied energy is much more significant than previously thought. Also, compared to a standard house with the same geometry, structure, finishes and number of people, a passive house can use more energy over 80 years, mainly due to the additional materials required. Current building energy efficiency certifications should widen their system boundaries to include embodied energy in order to reduce the life cycle energy demand of residential buildings.

A Study on the Effect of Valve Timing on the Combustion and Emission Characteristics for a 4-cylinder PCCI Diesel Engine

PCCI engines can reduce NOx and PM emissions simultaneously without sacrificing thermal efficiency, but a low combustion temperature resulting from early fuel injection, and ignition occurring prior to TDC, can cause higher THC and CO emissions and fuel consumption. In conclusion, it was found that the PCCI combustion achieved by the 2-stage injection strategy with optimized calibration factors (e.g. EGR rate, injection pressure, swirl ratio, intake pressure, injection timing) can reduce NOx and PM emissions simultaneously. This research works are expected to provide valuable information conducive to a development of an innovative combustion engine that can fulfill upcoming stringent emission standards.

Mounting Time Reduction using Content-Based Block Management for NAND Flash File System

The flash memory has many advantages such as low power consumption, strong shock resistance, fast I/O and non-volatility. And it is increasingly used in the mobile storage device. The YAFFS, one of the NAND flash file system, is widely used in the embedded device. However, the existing YAFFS takes long time to mount the file system because it scans whole spare areas in all pages of NAND flash memory. In order to solve this problem, we propose a new content-based flash file system using a mounting time reduction technique. The proposed method only scans partial spare areas of some special pages by using content-based block management. The experimental results show that the proposed method reduces the average mounting time by 87.2% comparing with JFFS2 and 69.9% comparing with YAFFS.

Optimization Based Obstacle Avoidance

Based on a non-linear single track model which describes the dynamics of vehicle, an optimal path planning strategy is developed. Real time optimization is used to generate reference control values to allow leading the vehicle alongside a calculated lane which is optimal for different objectives such as energy consumption, run time, safety or comfort characteristics. Strict mathematic formulation of the autonomous driving allows taking decision on undefined situation such as lane change or obstacle avoidance. Based on position of the vehicle, lane situation and obstacle position, the optimization problem is reformulated in real-time to avoid the obstacle and any car crash.

An Innovational Intermittent Algorithm in Networks-On-Chip (NOC)

Every day human life experiences new equipments more automatic and with more abilities. So the need for faster processors doesn-t seem to finish. Despite new architectures and higher frequencies, a single processor is not adequate for many applications. Parallel processing and networks are previous solutions for this problem. The new solution to put a network of resources on a chip is called NOC (network on a chip). The more usual topology for NOC is mesh topology. There are several routing algorithms suitable for this topology such as XY, fully adaptive, etc. In this paper we have suggested a new algorithm named Intermittent X, Y (IX/Y). We have developed the new algorithm in simulation environment to compare delay and power consumption with elders' algorithms.

Simulated Annealing Algorithm for Data Aggregation Trees in Wireless Sensor Networks and Comparison with Genetic Algorithm

In ad hoc networks, the main issue about designing of protocols is quality of service, so that in wireless sensor networks the main constraint in designing protocols is limited energy of sensors. In fact, protocols which minimize the power consumption in sensors are more considered in wireless sensor networks. One approach of reducing energy consumption in wireless sensor networks is to reduce the number of packages that are transmitted in network. The technique of collecting data that combines related data and prevent transmission of additional packages in network can be effective in the reducing of transmitted packages- number. According to this fact that information processing consumes less power than information transmitting, Data Aggregation has great importance and because of this fact this technique is used in many protocols [5]. One of the Data Aggregation techniques is to use Data Aggregation tree. But finding one optimum Data Aggregation tree to collect data in networks with one sink is a NP-hard problem. In the Data Aggregation technique, related information packages are combined in intermediate nodes and form one package. So the number of packages which are transmitted in network reduces and therefore, less energy will be consumed that at last results in improvement of longevity of network. Heuristic methods are used in order to solve the NP-hard problem that one of these optimization methods is to solve Simulated Annealing problems. In this article, we will propose new method in order to build data collection tree in wireless sensor networks by using Simulated Annealing algorithm and we will evaluate its efficiency whit Genetic Algorithm.

Edit Distance Algorithm to Increase Storage Efficiency of Javanese Corpora

Since the one-to-one word translator does not have the facility to translate pragmatic aspects of Javanese, the parallel text alignment model described uses a phrase pair combination. The algorithm aligns the parallel text automatically from the beginning to the end of each sentence. Even though the results of the phrase pair combination outperform the previous algorithm, it is still inefficient. Recording all possible combinations consume more space in the database and time consuming. The original algorithm is modified by applying the edit distance coefficient to improve the data-storage efficiency. As a result, the data-storage consumption is 90% reduced as well as its learning period (42s).

Two New Low Power High Performance Full Adders with Minimum Gates

with increasing circuits- complexity and demand to use portable devices, power consumption is one of the most important parameters these days. Full adders are the basic block of many circuits. Therefore reducing power consumption in full adders is very important in low power circuits. One of the most powerconsuming modules in full adders is XOR/XNOR circuit. This paper presents two new full adders based on two new logic approaches. The proposed logic approaches use one XOR or XNOR gate to implement a full adder cell. Therefore, delay and power will be decreased. Using two new approaches and two XOR and XNOR gates, two new full adders have been implemented in this paper. Simulations are carried out by HSPICE in 0.18μm bulk technology with 1.8V supply voltage. The results show that the ten-transistors proposed full adder has 12% less power consumption and is 5% faster in comparison to MB12T full adder. 9T is more efficient in area and is 24% better than similar 10T full adder in term of power consumption. The main drawback of the proposed circuits is output threshold loss problem.

Can Smart Meters Create Smart Behaviour?

Intelligent technologies are increasingly facilitating sustainable water management strategies in Australia. While this innovation can present clear cost benefits to utilities through immediate leak detection and deference of capital costs, the impact of this technology on households is less distinct. By offering real-time engagement and detailed end-use consumption breakdowns, there is significant potential for demand reduction as a behavioural response to increased information. Despite this potential, passive implementation without well-planned residential engagement strategies is likely to result in a lost opportunity. This paper begins this research process by exploring the effect of smart water meters through the lens of three behaviour change theories. The Theory of Planned Behaviour (TPB), Belief Revision theory (BR) and Practice Theory emphasise different variables that can potentially influence and predict household water engagements. In acknowledging the strengths of each theory, the nuances and complexity of household water engagement can be recognised which can contribute to effective planning for residential smart meter engagement strategies.

Improving the Effectiveness of Software Testing through Test Case Reduction

This paper proposes a new technique for improving the efficiency of software testing, which is based on a conventional attempt to reduce test cases that have to be tested for any given software. The approach utilizes the advantage of Regression Testing where fewer test cases would lessen time consumption of the testing as a whole. The technique also offers a means to perform test case generation automatically. Compared to one of the techniques in the literature where the tester has no option but to perform the test case generation manually, the proposed technique provides a better option. As for the test cases reduction, the technique uses simple algebraic conditions to assign fixed values to variables (Maximum, minimum and constant variables). By doing this, the variables values would be limited within a definite range, resulting in fewer numbers of possible test cases to process. The technique can also be used in program loops and arrays.

Image Sensor Matrix High Speed Simulation

This paper presents a new high speed simulation methodology to solve the long simulation time problem of CMOS image sensor matrix. Generally, for integrating the pixel matrix in SOC and simulating the system performance, designers try to model the pixel in various modeling languages such as VHDL-AMS, SystemC or Matlab. We introduce a new alternative method based on spice model in cadence design platform to achieve accuracy and reduce simulation time. The simulation results indicate that the pixel output voltage maximum error is at 0.7812% and time consumption reduces from 2.2 days to 13 minutes achieving about 240X speed-up for the 256x256 pixel matrix.

A Gnutella-based P2P System Using Cross-Layer Design for MANET

It is expected that ubiquitous era will come soon. A ubiquitous environment has features like peer-to-peer and nomadic environments. Such features can be represented by peer-to-peer systems and mobile ad-hoc networks (MANETs). The features of P2P systems and MANETs are similar, appealing for implementing P2P systems in MANET environment. It has been shown that, however, the performance of the P2P systems designed for wired networks do not perform satisfactorily in mobile ad-hoc environment. Subsequently, this paper proposes a method to improve P2P performance using cross-layer design and the goodness of a node as a peer. The proposed method uses routing metric as well as P2P metric to choose favorable peers to connect. It also utilizes proactive approach for distributing peer information. According to the simulation results, the proposed method provides higher query success rate, shorter query response time and less energy consumption by constructing an efficient overlay network.

Sustainability Strategy and Firm Performance in Residential Trade and Industry: A Conceptual Analysis

The request for a sustainable development challenges both managers and consumers to rethink habitual practices and activities. While consumers are challenged to develop sustainable consumption patterns, companies are asked to establish managerial systems and structures considering economical, ecological, and social issues. As this is in particular true for housing associations, this paper aims first, at providing an understanding of sustainability strategy in residential trade and industry (RTI) by identifying relevant facets of this construct and second, at conceptually analyzing the impact of sustainability strategy in RTI on operational efficiency and performance of municipal housing companies. The author develops a model of sustainability strategy in RTI and its effects and further, sheds light in priorities for future research.

Optimization of Fuel Consumption of a Bus used in City Line with Regulation of Driving Characteristics

The fuel cost of the motor vehicle operating on its common route is an important part of the operating cost. Therefore, the importance of the fuel saving is increasing day by day. One of the parameters which improve fuel saving is the regulation of driving characteristics. The number and duration of stop is increased by the heavy traffic load. It is possible to improve the fuel saving with regulation of traffic flow and driving characteristics. The researches show that the regulation of the traffic flow decreases fuel consumption, but it is not enough to improve fuel saving without the regulation of driving characteristics. This study analyses the fuel consumption of two trips of city bus operating on its common route and determines the effect of traffic density and driving characteristics on fuel consumption. Finally it offers some suggestions about regulation of driving characteristics to improve the fuel saving. Fuel saving is determined according to the results obtained from simulation program. When experimental and simulation results are compared, it has been found that the fuel saving was reached up the to 40 percent ratios.

The Effect of Tmax in Energy Consumption in 0IEEE 802.16e with Traffic Load

Energy consumption is an important design issue for Mobile Subscriber Station (MSS) in the standard IEEE 802.16e. Because mobility of MSS implies that energy saving becomes an issue so that lifetime of MSS can be extended before re-charging. Also, the mechanism in efficiently managing the limited energy is becoming very significant since a MSS is generally energized by battery. For these, sleep mode operation is recently specified in the MAC (Medium Access Control) protocol. In order to reduce the energy consumption, we focus on the sleep-mode and wake-mode of the MAC layer, which are included in the IEEE 802.16 standards [1- 2].