Complexity Reduction Approach with Jacobi Iterative Method for Solving Composite Trapezoidal Algebraic Equations

In this paper, application of the complexity reduction approach based on half- and quarter-sweep iteration concepts with Jacobi iterative method for solving composite trapezoidal (CT) algebraic equations is discussed. The performances of the methods for CT algebraic equations are comparatively studied by their application in solving linear Fredholm integral equations of the second kind. Furthermore, computational complexity analysis and numerical results for three test problems are also included in order to verify performance of the methods.

Issues in the User Interface Design of a Content Rich Vocational Training Application for Digitally Illiterate Users

This paper discusses our preliminary experiences in the design of a user interface of a computerized content-rich vocational training courseware meant for users with little or no computer experience. In targeting a growing population with limited access to skills training of any sort, we faced numerous challenges, including language and cultural differences, resource limits, gender boundaries and, in many cases, the simple lack of trainee motivation. With the size of the unskilled population increasing much more rapidly than the numbers of sufficiently skilled teachers, there is little choice but to develop teaching techniques that will take advantage of emerging computer-based training technologies. However, in striving to serve populations with minimal computer literacy, one must carefully design the user interface to accommodate their cultural, social, educational, motivational and other differences. Our work, which uses computer based and haptic simulation technologies to deliver training to these populations, has provided some useful insights on potential user interface design approaches.

Septic B-Spline Collocation Method for Numerical Solution of the Kuramoto-Sivashinsky Equation

In this paper the Kuramoto-Sivashinsky equation is solved numerically by collocation method. The solution is approximated as a linear combination of septic B-spline functions. Applying the Von-Neumann stability analysis technique, we show that the method is unconditionally stable. The method is applied on some test examples, and the numerical results have been compared with the exact solutions. The global relative error and L∞ in the solutions show the efficiency of the method computationally.

Design and Implementation of Reed Solomon Encoder on FPGA

Error correcting codes are used for detection and correction of errors in digital communication system. Error correcting coding is based on appending of redundancy to the information message according to a prescribed algorithm. Reed Solomon codes are part of channel coding and withstand the effect of noise, interference and fading. Galois field arithmetic is used for encoding and decoding reed Solomon codes. Galois field multipliers and linear feedback shift registers are used for encoding the information data block. The design of Reed Solomon encoder is complex because of use of LFSR and Galois field arithmetic. The purpose of this paper is to design and implement Reed Solomon (255, 239) encoder with optimized and lesser number of Galois Field multipliers. Symmetric generator polynomial is used to reduce the number of GF multipliers. To increase the capability toward error correction, convolution interleaving will be used with RS encoder. The Design will be implemented on Xilinx FPGA Spartan II.

Cubic B-spline Collocation Method for Numerical Solution of the Benjamin-Bona-Mahony-Burgers Equation

In this paper, numerical solutions of the nonlinear Benjamin-Bona-Mahony-Burgers (BBMB) equation are obtained by a method based on collocation of cubic B-splines. Applying the Von-Neumann stability analysis, the proposed method is shown to be unconditionally stable. The method is applied on some test examples, and the numerical results have been compared with the exact solutions. The L∞ and L2 in the solutions show the efficiency of the method computationally.

Creative Teaching of New Product Development to Operations Managers

New Product Development (NPD) has got its roots on an Engineering background. Thus, one might wonder about the interest, opportunity, contents and delivery process, if students from soft sciences were involved. This paper addressed «What to teach?» and «How to do it?», as the preliminary research questions that originated the introduced propositions. The curriculum-developer model that was purposefully chosen to adapt the coursebook by pursuing macro/micro strategies was found significant by an exploratory qualitative case study. Moreover, learning was developed and value created by implementing the institutional curriculum through a creative, hands-on, experiencing, problem-solving, problem-based but organized teamwork approach. Product design of an orange squeezer complying with ill-defined requirements, including drafts, sketches, prototypes, CAD simulations and a business plan, plus a website, written reports and presentations were the deliverables that confirmed an innovative contribution towards research and practice of teaching and learning of engineering subjects to non-specialist operations managers candidates.

Experimental Study on Adsorption Capacity of Activated Carbon Pairs with Different Refrigerants

This study is experimentally targeting to develop effective in heat and mass transfer processes for the adsorbate to obtain applicable adsorption capacity data. This is done by using fin and tube heat exchanger core and the adsorbate is adhesive over its surface and located as the core of the adsorber. The pairs are activated carbon powder/R-134a, activated carbon powder/R-407c, activated carbon powder/R-507A, activated carbon granules/R-507A, activated carbon granules/R-407c and activated carbon granules/R-134a, at different adsorption temperatures of 25, 30, 35 and 50°C. The following is results is obtained: at adsorption temperature of 25 °C the maximum adsorption capacity is found to be 0.8352kg/kg for activated carbon powder with R-134a and the minimum adsorption capacity found to be 0.1583kg/kg for activated carbon granules with R-407c. While, at adsorption temperature of 50°C the maximum adsorption capacity is found to be 0.3207kg/kg for activated carbon powder with R-134a and the minimum adsorption capacity found to be 0.0609kg/kg for activated carbon granules with R-407c. Therefore, the activated carbon powder/R-134a pair is highly recommended to be used as adsorption refrigeration working pair because of its higher maximum adsorption capacity than the other tested pairs, to produce a compact, efficient and reliable for long life performance adsorption refrigeration system.

Experimental Testing of Statistical Size Effect in Civil Engineering Structures

The presented paper copes with an experimental evaluation of a model based on modified Weibull size effect theory. Classical statistical Weibull theory was modified by introducing a new parameter (correlation length lp) representing the spatial autocorrelation of a random mechanical properties of material. This size effect modification was observed on two different materials used in civil engineering: unreinforced (plain) concrete and multi-filament yarns made of alkaliresistant (AR) glass which are used for textile-reinforced concrete. The behavior under flexural, resp. tensile loading was investigated by laboratory experiments. A high number of specimens of different sizes was tested to obtain statistically significant data which were subsequently corrected and statistically processed. Due to a distortion of the measured displacements caused by the unstiff experiment device, only the maximal load values were statistically evaluated. Results of the experiments showed a decreasing strength with an increasing sample length. Size effect curves were obtained and the correlation length was fitted according to measured data. Results did not exclude the existence of the proposed new parameter lp.

Proximal Parallel Alternating Direction Method for Monotone Structured Variational Inequalities

In this paper, we focus on the alternating direction method, which is one of the most effective methods for solving structured variational inequalities(VI). In fact, we propose a proximal parallel alternating direction method which only needs to solve two strongly monotone sub-VI problems at each iteration. Convergence of the new method is proved under mild assumptions. We also present some preliminary numerical results, which indicate that the new method is quite efficient.

Enhanced Gram-Schmidt Process for Improving the Stability in Signal and Image Processing

The Gram-Schmidt Process (GSP) is used to convert a non-orthogonal basis (a set of linearly independent vectors) into an orthonormal basis (a set of orthogonal, unit-length vectors). The process consists of taking each vector and then subtracting the elements in common with the previous vectors. This paper introduces an Enhanced version of the Gram-Schmidt Process (EGSP) with inverse, which is useful for signal and image processing applications.

Remote Control Software for Rohde and Schwarz Instruments

The paper describes software for remote control and measuring with new Graphical User Interface for Rohde & Schwarz instruments. Software allows remote control through Ethernet and supports basic and advanced functions for control various type of instruments like network and spectrum analyzers, power meters, signal generators and oscilloscopes. Standard Commands for Programmable Instruments (SCPI) and Virtual Instrument Software Architecture (VISA) are used for remote control and setup of instruments. Developed software is modular with user friendly graphic user interface for each instrument with automatic identification of instruments.

Algebraic Riccati Matrix Equation for Eigen- Decomposition of Special Structured Matrices; Applications in Structural Mechanics

In this paper Algebraic Riccati matrix equation is used for Eigen-decomposition of special structured matrices. This is achieved by similarity transformation and then using algebraic riccati matrix equation to triangulation of matrices. The process is decomposition of matrices into small and specially structured submatrices with low dimensions for fast and easy finding of Eigenpairs. Numerical and structural examples included showing the efficiency of present method.

Investments Attractiveness via Combinatorial Optimization Ranking

The paper proposes an approach to ranking a set of potential countries to invest taking into account the investor point of view about importance of different economic indicators. For the goal, a ranking algorithm that contributes to rational decision making is proposed. The described algorithm is based on combinatorial optimization modeling and repeated multi-criteria tasks solution. The final result is list of countries ranked in respect of investor preferences about importance of economic indicators for investment attractiveness. Different scenarios are simulated conforming to different investors preferences. A numerical example with real dataset of indicators is solved. The numerical testing shows the applicability of the described algorithm. The proposed approach can be used with any sets of indicators as ranking criteria reflecting different points of view of investors. 

Micro-Hydrokinetic for Remote Rural Electrification

Standalone micro-hydrokinetic river (MHR) system is one of the promising technologies to be used for remote rural electrification. It simply requires the flow of water instead of elevation or head, leading to expensive civil works. This paper demonstrates an economic benefit offered by a standalone MHR system when compared to the commonly used standalone systems such as solar, wind and diesel generator (DG) at the selected study site in Kwazulu Natal. Wind speed and solar radiation data of the selected rural site have been taken from national aeronautics and space administration (NASA) surface meteorology database. The hybrid optimization model for electric renewable (HOMER) software was used to determine the most feasible solution when using MHR, solar, wind or DG system to supply 5 rural houses. MHR system proved to be the best cost-effective option to consider at the study site due to its low cost of energy (COE) and low net present cost (NPC).

Revision of Genus Polygonum L. s.l. in Flora of Armenia

The account of genus Polygonum L. in "Flora of Armenia" was made more than five decades ago. After that many expeditions have been carried out in different regions of Armenia and a huge herbarium material has been collected. The genus included 5 sections with 20 species. Since then many authors accepted the sections as separate genera on the basis of anatomical, morphological, palynological and molecular data. According to the above mentioned it became clear, that the taxonomy of Armenian representatives of Polygonum s. l. also needs revision. New literature data and our investigations of live and herbarium material (ERE, LE) with specification of the morphological characters, distribution, ecology, flowering and fruiting terms brought us to conclusion, that genus Polygonum s. l. has to be split into 5 different genera (Aconogonon (Meisn.) Reichenb., Bistorta (L.) Scop., Fallopia Adans., Persicaria Mill., Polygonum L. s. s.). The number of species has been reduced to 16 species. For each genus new determination keys has been created. 

Pricing Strategy Selection Using Fuzzy Linear Programming

Marketing establishes a communication network between producers and consumers. Nowadays, marketing approach is customer-focused and products are directly oriented to meet customer needs. Marketing, which is a long process, needs organization and management. Therefore strategic marketing planning becomes more and more important in today’s competitive conditions. Main focus of this paper is to evaluate pricing strategies and select the best pricing strategy solution while considering internal and external factors influencing the company’s pricing decisions associated with new product development. To reflect the decision maker’s subjective preference information and to determine the weight vector of factors (attributes), the fuzzy linear programming technique for multidimensional analysis of preference (LINMAP) under intuitionistic fuzzy (IF) environments is used.

Batch and Continuous Packed Column Studies Biosorption by Yeast Supported onto Granular Pozzolana

The removal of chromium by living yeast biomass immobilized onto pozzolana was studied. The results obtained in batch experiments indicate that the immobilized yeast on to pozzolana is a excellent biosorbent of Cr(V) with a good removal rates of 85–90%. The initial concentration solution and agitation speed affected Cr(V) removal. The batch studies data were described using the Freundlich and Langmuir models, but the best fit was obtained with Langmuir model. The breakthrough curve from the continuous flow studies shows that immobilized yeast in the fixed-bed column is capable of decreasing Cr(VI) concentration from 15mg/l to a adequate level. 

Jacobi-Based Methods in Solving Fuzzy Linear Systems

Linear systems are widely used in many fields of science and engineering. In many applications, at least some of the parameters of the system are represented by fuzzy rather than crisp numbers. Therefore it is important to perform numerical algorithms or procedures that would treat general fuzzy linear systems and solve them using iterative methods. This paper aims are to solve fuzzy linear systems using four types of Jacobi based iterative methods. Four iterative methods based on Jacobi are used for solving a general n × n fuzzy system of linear equations of the form Ax = b , where A is a crisp matrix and b an arbitrary fuzzy vector. The Jacobi, Jacobi Over-Relaxation, Refinement of Jacobi and Refinement of Jacobi Over-Relaxation methods was tested to a five by five fuzzy linear system. It is found that all the tested methods were iterated differently. Due to the effect of extrapolation parameters and the refinement, the Refinement of Jacobi Over-Relaxation method was outperformed the other three methods.

The Digital Filing Cabinet–A GIS Based Management Solution Tool for the Land Surveyor and Engineer

This paper explains how the New Jersey Institute of Technology surveying student team members designed and created an interactive GIS map, the purpose of which is to be useful to the land surveyor and engineer for project management. This was achieved by building a research and storage database that can be easily integrated into any land surveyor’s current operations through the use of ArcGIS 10, Arc Catalog, and AutoCAD. This GIS database allows for visual representation and information querying for multiple job sites, and simple access to uploaded data, which is geospatially referenced to each individual job site or project. It can also be utilized by engineers to determine design criteria, or to store important files. This cost-effective approach to a surveying map not only saves time, but saves physical storage space and paper resources.

Feasibility of Risk Assessment for Type 2 Diabetes in Community Pharmacies Using Two Different Approaches: A Pilot Study in Thailand

Aims: To evaluate the application of non-invasive diabetes risk assessment tool in community pharmacy setting. Methods: Thai diabetes risk score was applied to assess individuals at risk of developing type 2 diabetes. Interactive computer-based risk screening (IT) and paper-based risk screening (PT) tools were applied. Participants aged over 25 years with no known diabetes were recruited in six participating pharmacies. Results: A total of 187 clients, mean aged (+SD) was 48.6 (+10.9) years. 35% were at high risk. The mean value of willingness-to-pay for the service fee in IT group was significantly higher than PT group (p=0.013). No significant difference observed for the satisfaction between groups. Conclusions: Non-invasive risk assessment tool, whether paper-based or computerized-based can be applied in community pharmacy to support the enhancing role of pharmacists in chronic disease management. Long term follow up is needed to determine the impact of its application in clinical, humanistic and economic outcomes.