Repairing and Strengthening Earthquake Damaged RC Beams with Composites

The dominant judgment for earthquake damaged reinforced concrete (RC) structures is to rebuild them with the new ones. Consequently, this paper estimates if there is chance to repair earthquake RC beams and obtain economical contribution to modern day society. Therefore, the totally damaged (damaged in shear under cyclic load) reinforced concrete (RC) beams repaired and strengthened by externally bonded carbon fibre reinforced polymer (CFRP) strips in this study. Four specimens, apart from the reference beam, were separated into two distinct groups. Two experimental beams in the first group primarily tested up to failure then appropriately repaired and strengthened with CFRP strips. Two undamaged specimens from the second group were not repaired but strengthened by the identical strengthening scheme as the first group for comparison. This study studies whether earthquake damaged RC beams that have been repaired and strengthened will validate similar strength and behavior to equally strengthened, undamaged RC beams. Accordingly, a strength correspondence according to strengthened specimens was acquired for the repaired and strengthened specimens. Test results confirmed that repair and strengthening, which were estimated in the experimental program, were effective for the specimens with the cracking patterns considered in the experimental program. 

Implementation of the Personal Emergency Response System

The aged are faced with increasing risk for falls. The aged have the easily fragile bones than others. When falls have occurred, it is important to detect this emergency state because such events often lead to more serious illness or even death. A implementation of PDA system, for detection of emergency situation, was developed using 3-axis accelerometer in this paper as follows. The signals were acquired from the 3-axis accelerometer, and then transmitted to the PDA through Bluetooth module. This system can classify the human activity, and also detect the emergency state like falls. When the fall occurs, the system generates the alarm on the PDA. If a subject does not respond to the alarm, the system determines whether the current situation is an emergency state or not, and then sends some information to the emergency center in the case of urgent situation. Three different studies were conducted on 12 experimental subjects, with results indicating a good accuracy. The first study was performed to detect the posture change of human daily activity. The second study was performed to detect the correct direction of fall. The third study was conducted to check the classification of the daily physical activity. Each test was lasted at least 1 min. in third study. The output of acceleration signal was compared and evaluated by changing a various posture after attaching a 3-axis accelerometer module on the chest. The newly developed system has some important features such as portability, convenience and low cost. One of the main advantages of this system is that it is available at home healthcare environment. Another important feature lies in low cost to manufacture device. The implemented system can detect the fall accurately, so will be widely used in emergency situation.

Building Virtual Reality Environments for Distance Education on the Web: A Case Study in Medical Education

The paper presents an investigation into the role of virtual reality and web technologies in the field of distance education. Within this frame, special emphasis is given on the building of web-based virtual learning environments so as to successfully fulfill their educational objectives. In particular, basic pedagogical methods are studied, focusing mainly on the efficient preparation, approach and presentation of learning content, and specific designing rules are presented considering the hypermedia, virtual and educational nature of this kind of applications. The paper also aims to highlight the educational benefits arising from the use of virtual reality technology in medicine and study the emerging area of web-based medical simulations. Finally, an innovative virtual reality environment for distance education in medicine is demonstrated. The proposed environment reproduces conditions of the real learning process and enhances learning through a real-time interactive simulator.

A Highly Efficient Process Applying Sige Film to Generate Quasi-Beehive Si Nanostructure for the Growth of Platinum Nanopillars with High Emission Property for the Applications of X-Ray Tube

We report a lithography-free approach to fabricate the biomimetics, quasi-beehive Si nanostructures (QBSNs), on Si-substrates. The self-assembled SiGe nanoislands via the strain induced surface roughening (Asaro-Tiller-Grinfeld instability) during in-situ annealing play a key role as patterned sacrifice regions for subsequent reactive ion etching (RIE) process performed for fabricating quasi-beehive nanostructures on Si-substrates. As the measurements of field emission, the bare QBSNs show poor field emission performance, resulted from the existence of the native oxide layer which forms an insurmountable barrier for electron emission. In order to dramatically improve the field emission characteristics, the platinum nanopillars (Pt-NPs) were deposited on QBSNs to form Pt-NPs/QBSNs heterostructures. The turn-on field of Pt-NPs/QBSNs is as low as 2.29 V/μm (corresponding current density of 1 μA/cm2), and the field enhancement factor (β-value) is significantly increased to 6067. More importantly, the uniform and continuous electrons excite light emission, due to the surrounding filed emitters from Pt-NPs/QBSNs, can be easily obtained. This approach does not require an expensive photolithographic process and possesses great potential for applications.

Spatial Distribution and Risk Assessment of As, Hg, Co and Cr in Kaveh Industrial City, using Geostatistic and GIS

The concentrations of As, Hg, Co, Cr and Cd were tested for each soil sample, and their spatial patterns were analyzed by the semivariogram approach of geostatistics and geographical information system technology. Multivariate statistic approaches (principal component analysis and cluster analysis) were used to identify heavy metal sources and their spatial pattern. Principal component analysis coupled with correlation between heavy metals showed that primary inputs of As, Hg and Cd were due to anthropogenic while, Co, and Cr were associated with pedogenic factors. Ordinary kriging was carried out to map the spatial patters of heavy metals. The high pollution sources evaluated was related with usage of urban and industrial wastewater. The results of this study helpful for risk assessment of environmental pollution for decision making for industrial adjustment and remedy soil pollution.

E-Learning Management Systems General Framework

The recent development in learning technologies leads to emerge many learning management systems (LMS). In this study, we concentrate on the specifications and characteristics of LMSs. Furthermore, this paper emphasizes on the feature of e-learning management systems. The features take on the account main indicators to assist and evaluate the quality of e-learning systems. The proposed indicators based of ten dimensions.

Cooling of Fresh Vegetable Farm Produce: Experimental and Numerical Studies

Following harvest, fresh produce needs to be cooled immediately in a room where the air temperature and the relative air humidity are controlled to maintain the produce quality. In this paper, an experimental study for forced air cooling of fresh produce (cauliflower) is performed using a pilot developed within our laboratory. Furthermore, a numerical simulation of spherical produces, taking into account the aerodynamic aspect and also the heat transfer in the produce and in the air, was carried out using a finite element method. At the end of this communication, experimental results are presented and compared with the simulation.

Numerical Investigation of Nozzle Shape Effect on Shock Wave in Natural Gas Processing

Natural gas flow contains undesirable solid particles, liquid condensation, and/or oil droplets and requires reliable removing equipment to perform filtration. Recent natural gas processing applications are demanded compactness and reliability of process equipment. Since conventional means are sophisticated in design, poor in efficiency, and continue lacking robust, a supersonic nozzle has been introduced as an alternative means to meet such demands. A 3-D Convergent-Divergent Nozzle is simulated using commercial Code for pressure ratio (NPR) varies from 1.2 to 2. Six different shapes of nozzle are numerically examined to illustrate the position of shock-wave as such spot could be considered as a benchmark of particle separation. Rectangle, triangle, circular, elliptical, pentagon, and hexagon nozzles are simulated using Fluent Code with all have same cross-sectional area. The simple one-dimensional inviscid theory does not describe the actual features of fluid flow precisely as it ignores the impact of nozzle configuration on the flow properties. CFD Simulation results, however, show that nozzle geometry influences the flow structures including location of shock wave. The CFD analysis predicts shock appearance when p01/pa>1.2 for almost all geometry and locates at the lower area ratio (Ae/At). Simulation results showed that shock wave in Elliptical nozzle has the farthest distance from the throat among the others at relatively small NPR. As NPR increases, hexagon would be the farthest. The numerical result is compared with available experimental data and has shown good agreement in terms of shock location and flow structure.

Inhibition Kinetic Determination of Trace Amounts of Ruthenium(III) by the Spectrophotometric method with Rhodamine B in Micellar Medium

A new, simple and highly sensitive kinetic spectrophotometric method was developed for the determination of trace amounts of Ru(III) in the range of 0.06-20 ng/ml .The method is based on the inhibitory effect of ruthenium(III) on the oxidation of Rhodamine B by bromate in acidic and micellar medium. The reaction was monitored spectrophotometrically by measuring the decreasing in absorbance of Rhodamine B at 554 nm with a fixedtime method..The limit of detection is 0.04 ng/ml Ru(III).The relative standard deviation of 5 and 10 ng/ml Ru(III) was 2.3 and 2.7 %, respectively. The method was applied to the determination of ruthenium in real water samples

Speaker Identification Using Admissible Wavelet Packet Based Decomposition

Mel Frequency Cepstral Coefficient (MFCC) features are widely used as acoustic features for speech recognition as well as speaker recognition. In MFCC feature representation, the Mel frequency scale is used to get a high resolution in low frequency region, and a low resolution in high frequency region. This kind of processing is good for obtaining stable phonetic information, but not suitable for speaker features that are located in high frequency regions. The speaker individual information, which is non-uniformly distributed in the high frequencies, is equally important for speaker recognition. Based on this fact we proposed an admissible wavelet packet based filter structure for speaker identification. Multiresolution capabilities of wavelet packet transform are used to derive the new features. The proposed scheme differs from previous wavelet based works, mainly in designing the filter structure. Unlike others, the proposed filter structure does not follow Mel scale. The closed-set speaker identification experiments performed on the TIMIT database shows improved identification performance compared to other commonly used Mel scale based filter structures using wavelets.

Genetic Algorithm for Feature Subset Selection with Exploitation of Feature Correlations from Continuous Wavelet Transform: a real-case Application

A genetic algorithm (GA) based feature subset selection algorithm is proposed in which the correlation structure of the features is exploited. The subset of features is validated according to the classification performance. Features derived from the continuous wavelet transform are potentially strongly correlated. GA-s that do not take the correlation structure of features into account are inefficient. The proposed algorithm forms clusters of correlated features and searches for a good candidate set of clusters. Secondly a search within the clusters is performed. Different simulations of the algorithm on a real-case data set with strong correlations between features show the increased classification performance. Comparison is performed with a standard GA without use of the correlation structure.

Wastewater Treatment in Moving-Bed Biofilm Reactor operated by Flow Reversal Intermittent Aeration System

Intermittent aeration process can be easily applied on the existing activated sludge system and is highly reliable against the loading changes. It can be operated in a relatively simple way as well. Since the moving-bed biofilm reactor method processes pollutants by attaching and securing the microorganisms on the media, the process efficiency can be higher compared to the suspended growth biological treatment process, and can reduce the return of sludge. In this study, the existing intermittent aeration process with alternating flow being applied on the oxidation ditch is applied on the continuous flow stirred tank reactor with advantages from both processes, and we would like to develop the process to significantly reduce the return of sludge in the clarifier and to secure the reliable quality of treated water by adding the moving media. Corresponding process has the appropriate form as an infrastructure based on u- environment in future u- City and is expected to accelerate the implementation of u-Eco city in conjunction with city based services. The system being conducted in a laboratory scale has been operated in HRT 8hours except for the final clarifier and showed the removal efficiency of 97.7 %, 73.1 % and 9.4 % in organic matters, TN and TP, respectively with operating range of 4hour cycle on system SRT 10days. After adding the media, the removal efficiency of phosphorus showed a similar level compared to that before the addition, but the removal efficiency of nitrogen was improved by 7~10 %. In addition, the solids which were maintained in MLSS 1200~1400 at 25 % of media packing were attached all onto the media, which produced no sludge entering the clarifier. Therefore, the return of sludge is not needed any longer.

Knowledge Acquisition, Absorptive Capacity, and Innovation Capability: An Empirical Study of Taiwan's Knowledge-Intensive Industries

This study investigates the roles of knowledge acquisition, absorptive capacity, and innovation capability in finance and manufacturing industries. With 362 valid questionnaires from manufactures and financial industries in Taiwan, we examine the relationships between absorptive capacity, knowledge acquisition and innovation capability using a structural equation model. The results indicate that absorptive capacity is the mediator between knowledge acquisition and innovation capability, and that knowledge acquisition has a positive effect on absorptive capacity.

Monitoring and Fault-Recovery Capacity with Waveguide Grating-based Optical Switch over WDM/OCDMA-PON

In order to implement flexibility as well as survivable capacities over passive optical network (PON), a new automatic random fault-recovery mechanism with array-waveguide-grating based (AWG-based) optical switch (OSW) is presented. Firstly, wavelength-division-multiplexing and optical code-division multiple-access (WDM/OCDMA) scheme are configured to meet the various geographical locations requirement between optical network unit (ONU) and optical line terminal (OLT). The AWG-base optical switch is designed and viewed as central star-mesh topology to prohibit/decrease the duplicated redundant elements such as fiber and transceiver as well. Hence, by simple monitoring and routing switch algorithm, random fault-recovery capacity is achieved over bi-directional (up/downstream) WDM/OCDMA scheme. When error of distribution fiber (DF) takes place or bit-error-rate (BER) is higher than 10-9 requirement, the primary/slave AWG-based OSW are adjusted and controlled dynamically to restore the affected ONU groups via the other working DFs immediately.

Analysis of Tool-Chip Interface Temperature with FEM and Empirical Verification

Reliable information about tool temperature distribution is of central importance in metal cutting. In this study, tool-chip interface temperature was determined in cutting of ST37 steel workpiece by applying HSS as the cutting tool in dry turning. Two different approaches were implemented for temperature measuring: an embedded thermocouple (RTD) in to the cutting tool and infrared (IR) camera. Comparisons are made between experimental data and results of MSC.SuperForm and FLUENT software. An investigation of heat generation in cutting tool was performed by varying cutting parameters at the stable cutting tool geometry and results were saved in a computer; then the diagrams of tool temperature vs. various cutting parameters were obtained. The experimental results reveal that the main factors of the increasing cutting temperature are cutting speed (V ), feed rate ( S ) and depth of cut ( h ), respectively. It was also determined that simultaneously change in cutting speed and feed rate has the maximum effect on increasing cutting temperature.

Synthesis of Aragonite Superstructure from Steelmaking Slag via Indirect CO2 Mineral Sequestration

Using steelmaking slag as a raw material, aragonite superstructure product had been synthesized via an indirect CO2 mineral sequestration rout. It mainly involved two separate steps, in which the element of calcium is first selectively leached from steelmaking slag by a novel leaching media consisting of organic solvent Tributyl phosphate (TBP), acetic acid, and ultra-purity water, followed by enhanced carbonation in a separate step for aragonite superstructure production as well as efficiency recovery of leaching media. Based on the different leaching medium employed in the steelmaking slag leaching process, two typical products were collected from the enhanced carbonation step. The products were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), respectively. It reveals that the needle-like aragonite crystals self-organized into aragonite superstructure particles including aragonite microspheres as well as dumbbell-like spherical particles, can be obtained from the steelmaking slag with the purity over 99%.

A Knowledge Engineering Workshop: Application for Choise Car

This paper proposes a declarative language for knowledge representation (Ibn Rochd), and its environment of exploitation (DeGSE). This DeGSE system was designed and developed to facilitate Ibn Rochd writing applications. The system was tested on several knowledge bases by ascending complexity, culminating in a system for recognition of a plant or a tree, and advisors to purchase a car, for pedagogical and academic guidance, or for bank savings and credit. Finally, the limits of the language and research perspectives are stated.

Translator Design to Model Cpp Files

The most reliable and accurate description of the actual behavior of a software system is its source code. However, not all questions about the system can be answered directly by resorting to this repository of information. What the reverse engineering methodology aims at is the extraction of abstract, goal-oriented “views" of the system, able to summarize relevant properties of the computation performed by the program. While concentrating on reverse engineering we had modeled the C++ files by designing the translator.

Integration and Selectivity in Open Innovation:An Empirical Analysis in SMEs

The company-s ability to draw on a range of external sources to meet their needs for innovation, has been termed 'open innovation' (OI). Very few empirical analyses have been conducted on Small and Medium Enterprises (SMEs) to the extent that they describe and understand the characteristics and implications of this new paradigm. The study's objective is to identify and characterize different modes of OI, (considering innovation process phases and the variety and breadth of the collaboration), determinants, barriers and motivations in SMEs. Therefore a survey was carried out among Italian manufacturing firms and a database of 105 companies was obtained. With regard to data elaboration, a factorial and cluster analysis has been conducted and three different OI modes have emerged: selective low open, unselective open upstream, and mid- partners integrated open. The different behaviours of the three clusters in terms of determinants factors, performance, firm-s technology intensity, barriers and motivations have been analyzed and discussed.

Order Penetration Point Location using Fuzzy Quadratic Programming

This paper addresses one of the most important issues have been considered in hybrid MTS/MTO production environments. To cope with the problem, a mathematical programming model is applied from a tactical point of view. The model is converted to a fuzzy goal programming model, because a degree of uncertainty is involved in hybrid MTS/MTO context. Finally, application of the proposed model in an industrial center is reported and the results prove the validity of the model.