A Systematic Approach for Finding Hamiltonian Cycles with a Prescribed Edge in Crossed Cubes

The crossed cube is one of the most notable variations of hypercube, but some properties of the former are superior to those of the latter. For example, the diameter of the crossed cube is almost the half of that of the hypercube. In this paper, we focus on the problem embedding a Hamiltonian cycle through an arbitrary given edge in the crossed cube. We give necessary and sufficient condition for determining whether a given permutation with n elements over Zn generates a Hamiltonian cycle pattern of the crossed cube. Moreover, we obtain a lower bound for the number of different Hamiltonian cycles passing through a given edge in an n-dimensional crossed cube. Our work extends some recently obtained results.

Investigation of the Possibility to Prepare Supervised Classification Map of Gully Erosion by RS and GIS

This study investigates the possibility providing gully erosion map by the supervised classification of satellite images (ETM+) in two mountainous and plain land types. These land types were the part of Varamin plain, Tehran province, and Roodbar subbasin, Guilan province, as plain and mountain land types, respectively. The position of 652 and 124 ground control points were recorded by GPS respectively in mountain and plain land types. Soil gully erosion, land uses or plant covers were investigated in these points. Regarding ground control points and auxiliary points, training points of gully erosion and other surface features were introduced to software (Ilwis 3.3 Academic). The supervised classified map of gully erosion was prepared by maximum likelihood method and then, overall accuracy of this map was computed. Results showed that the possibility supervised classification of gully erosion isn-t possible, although it need more studies for results generalization to other mountainous regions. Also, with increasing land uses and other surface features in plain physiography, it decreases the classification of accuracy.

Application of Life Data Analysis for the Reliability Assessment of Numerical Overcurrent Relays

Protective relays are components of a protection system in a power system domain that provides decision making element for correct protection and fault clearing operations. Failure of the protection devices may reduce the integrity and reliability of the power system protection that will impact the overall performance of the power system. Hence it is imperative for power utilities to assess the reliability of protective relays to assure it will perform its intended function without failure. This paper will discuss the application of reliability analysis using statistical method called Life Data Analysis in Tenaga Nasional Berhad (TNB), a government linked power utility company in Malaysia, namely Transmission Division, to assess and evaluate the reliability of numerical overcurrent protective relays from two different manufacturers.

The Appropriate Time Required for Newborn Calf Camel to Get Optimal Amount of Colostrums Immunoglobulin (IgG) with Relation to Levels of Cortisol and Thyroxin

A major challenge in camel productivity is the high mortality rate of camel calves in the early stage due to the lack of colostrums. This study investigates the time required for the calves to obtain the optimum amount of the immunoglobulin (IgG). Eleven pregnant female camels (Camelus Dromedarus) were selected randomly and variant in age and gestation. After delivery, 7 calves were obtained and used for this investigation. Colostrum samples were collected from mothers immediately after parturition. Blood samples were obtained from the calves as follow: 0 day (before suckling), 24, 48, 72, 96, 120 and 144 hours, 2nd, 3rd, and 4th weeks post suckling. Blood serum and colostrums whey were separated and used to determine IgG concentration, total protein and concentration of Cortisol and Thyroxin. The results showed high levels of IgG in camel colostrums (328.8 ± 4.5 mg / ml). The IgG concentration in serum of calves was the highest within 1st 24 h after suckling (140.75 mg /ml), and then declined gradually reached lower level at 144 h (41.97 mg / ml). The average turnover rate (t 1/2) of serum IgG in the all cases was 3.22 days. The turnover of ranged from 2.56 days for calves have values of IgG more than average and 7.7 days for those with values below average. In spite of very high levels of thyroxin in sera of new born the results showed no correlation between cortisol and thyroxin with IgG levels.

Technology Diffusion and Inclusive Development in Africa: A System Dynamics Perspective

Technology or lack of it will play an important role in Africa-s effort to achieve inclusive development. Although a key determinant of competitiveness, new technology can exacerbate exclusion of the majority from the mainstream economic activities. To minimise potential technology exclusion while leveraging its critical role in African-s development, requires insight into technology diffusion process. Using system dynamics approach, a technology diffusion model is presented. The frequency of interaction of people exposed to and those not exposed to technology, and the technology adoption rate - the fraction of people who embrace new technologies once they are exposed, are identified as the broad factors critical to technology diffusion to wider society enabling more people to be part of the economic growth process. Based on simulation results, it is recommends that these two broad factors should form part of national policy aimed at achieving inclusive and sustainable development in Africa.

On the EM Algorithm and Bootstrap Approach Combination for Improving Satellite Image Fusion

This paper discusses EM algorithm and Bootstrap approach combination applied for the improvement of the satellite image fusion process. This novel satellite image fusion method based on estimation theory EM algorithm and reinforced by Bootstrap approach was successfully implemented and tested. The sensor images are firstly split by a Bayesian segmentation method to determine a joint region map for the fused image. Then, we use the EM algorithm in conjunction with the Bootstrap approach to develop the bootstrap EM fusion algorithm, hence producing the fused targeted image. We proposed in this research to estimate the statistical parameters from some iterative equations of the EM algorithm relying on a reference of representative Bootstrap samples of images. Sizes of those samples are determined from a new criterion called 'hybrid criterion'. Consequently, the obtained results of our work show that using the Bootstrap EM (BEM) in image fusion improve performances of estimated parameters which involve amelioration of the fused image quality; and reduce the computing time during the fusion process.

Implementation and Analysis of Elliptic Curve Cryptosystems over Polynomial basis and ONB

Polynomial bases and normal bases are both used for elliptic curve cryptosystems, but field arithmetic operations such as multiplication, inversion and doubling for each basis are implemented by different methods. In general, it is said that normal bases, especially optimal normal bases (ONB) which are special cases on normal bases, are efficient for the implementation in hardware in comparison with polynomial bases. However there seems to be more examined by implementing and analyzing these systems under similar condition. In this paper, we designed field arithmetic operators for each basis over GF(2233), which field has a polynomial basis recommended by SEC2 and a type-II ONB both, and analyzed these implementation results. And, in addition, we predicted the efficiency of two elliptic curve cryptosystems using these field arithmetic operators.

Some Relationships between Classes of Reverse Watson-Crick Finite Automata

A Watson-Crick automaton is recently introduced as a computational model of DNA computing framework. It works on tapes consisting of double stranded sequences of symbols. Symbols placed on the corresponding cells of the double-stranded sequences are related by a complimentary relation. In this paper, we investigate a variation of Watson-Crick automata in which both heads read the tape in reverse directions. They are called reverse Watson-Crick finite automata (RWKFA). We show that all of following four classes, i.e., simple, 1-limited, all-final, all-final and simple, are equal to non-restricted version of RWKFA.

Framework for Delivery Reliability in European Machinery and Equipment Industry

Today-s manufacturing companies are facing multiple and dynamic customer-supplier-relationships embedded in nonhierarchical production networks. This complex environment leads to problems with delivery reliability and wasteful turbulences throughout the entire network. This paper describes an operational model based on a theoretical framework which improves delivery reliability of each individual customer-supplier-relationship within non-hierarchical production networks of the European machinery and equipment industry. By developing a non-centralized coordination mechanism based on determining the value of delivery reliability and derivation of an incentive system for suppliers the number of in time deliveries can be increased and thus the turbulences in the production network smoothened. Comparable to an electronic stock exchange the coordination mechanism will transform the manual and nontransparent process of determining penalties for delivery delays into an automated and transparent market mechanism creating delivery reliability.

Actionable Rules: Issues and New Directions

Knowledge Discovery in Databases (KDD) is the process of extracting previously unknown, hidden and interesting patterns from a huge amount of data stored in databases. Data mining is a stage of the KDD process that aims at selecting and applying a particular data mining algorithm to extract an interesting and useful knowledge. It is highly expected that data mining methods will find interesting patterns according to some measures, from databases. It is of vital importance to define good measures of interestingness that would allow the system to discover only the useful patterns. Measures of interestingness are divided into objective and subjective measures. Objective measures are those that depend only on the structure of a pattern and which can be quantified by using statistical methods. While, subjective measures depend only on the subjectivity and understandability of the user who examine the patterns. These subjective measures are further divided into actionable, unexpected and novel. The key issues that faces data mining community is how to make actions on the basis of discovered knowledge. For a pattern to be actionable, the user subjectivity is captured by providing his/her background knowledge about domain. Here, we consider the actionability of the discovered knowledge as a measure of interestingness and raise important issues which need to be addressed to discover actionable knowledge.

Effects of Natural Frequency and Rotational Speed on Dynamic Stress in Spur Gear

Natural frequencies and dynamic response of a spur gear sector are investigated using a two dimensional finite element model that offers significant advantages for dynamic gear analyses. The gear teeth are analyzed for different operating speeds. A primary feature of this modeling is determination of mesh forces using a detailed contact analysis for each time step as the gears roll through the mesh. Transient mode super position method has been used to find horizontal and vertical components of displacement and dynamic stress. The finite element analysis software ANSYS has been used on the proposed model to find the natural frequencies by Block Lanczos technique and displacements and dynamic stresses by transient mode super position method. A comparison of theoretical (natural frequency and static stress) results with the finite element analysis results has also been done. The effect of rotational speed of the gears on the dynamic response of gear tooth has been studied and design limits have been discussed.

Heat Transfer in a Parallel-Plate Enclosure with Graded-Index Coatings on its Walls

A numerical study on the heat transfer in the thermal barrier coatings and the substrates of a parallel-plate enclosure is carried out. Some of the thermal barrier coatings, such as ceramics, are semitransparent and are of interest for high-temperature applications where radiation effects are significant. The radiative transfer equations and the energy equations are solved by using the discrete ordinates method and the finite difference method. Illustrative results are presented for temperature distributions in the coatings and the opaque walls under various heating conditions. The results show that the temperature distribution is more uniform in the interior portion of each coating away from its boundary for the case with a larger average of varying refractive index and a positive gradient of refractive index enhances radiative transfer to the substrates.

Transient Hydrodynamic and Thermal Behaviors of Fluid Flow in a Vertical Porous Microchannel under the Effect of Hyperbolic Heat Conduction Model

The transient hydrodynamics and thermal behaviors of fluid flow in open-ended vertical parallel-plate porous microchannel are investigated semi-analytically under the effect of the hyperbolic heat conduction model. The model that combines both the continuum approach and the possibility of slip at the boundary is adopted in the study. The Effects of Knudsen number , Darcy number , and thermal relaxation time  on the microchannel hydrodynamics and thermal behaviors are investigated using the hyperbolic heat conduction models. It is found that as  increases the slip in the hydrodynamic and thermal boundary condition increases. This slip in the hydrodynamic boundary condition increases as  increases. Also, the slip in the thermal boundary condition increases as  decreases especially the early stage of time.

Hydrodynamic Analysis of Reservoir Due to Vertical Component of Earthquake Using an Analytical Solution

This paper presents an analytical solution to get a reliable estimation of the hydrodynamic pressure on gravity dams induced by vertical component earthquake when solving the fluid and dam interaction problem. Presented analytical technique is presented for calculation of earthquake-induced hydrodynamic pressure in the reservoir of gravity dams allowing for water compressibility and wave absorption at the reservoir bottom. This new analytical solution can take into account the effect of bottom material on seismic response of gravity dams. It is concluded that because the vertical component of ground motion causes significant hydrodynamic forces in the horizontal direction on a vertical upstream face, responses to the vertical component of ground motion are of special importance in analysis of concrete gravity dams subjected to earthquakes.

Fabrication and Characterization of CdS Nanoparticles Annealed by using Different Radiations

The systematic manipulations of shapes and sizes of inorganic compounds greatly benefit the various application fields including optics, magnetic, electronics, catalysis and medicine. However shape control has been much more difficult to achieve. Hence exploration of novel method for the preparation of differently shaped nanoparticles is challenging research area. II-VI group of semiconductor cadmium sulphide (CdS) nanostructure with different morphologies (such as, acicular like, mesoporous, spherical shapes) and of crystallite sizes vary from 11 to 16 nm were successfully synthesized by chemical aqueous precipitation of Cd2+ ions with homogeneously released S2- ions from decomposition of cadmium sulphate (CdSO4) and thioacetamide (CH3CSNH2) by annealing at different radiations (microwave, ultrasonic and sunlight) with matter and systematic research has been done for various factors affecting the controlled growth rate of CdS nanoparticles. The obtained nanomaterials have been characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravometric (DSC-TGA) analysis and Scanning Electron Microscopy (SEM). The result indicates that on increasing the reaction time particle size increases but on increasing the molar ratios grain size decreases.

The Relationship between Business-model Innovation and Firm Value: A Dynamic Perspective

When consistently innovative business-models can give companies a competitive advantage, longitudinal empirical research, which can reflect dynamic business-model changes, has yet to prove a definitive connection. This study consequently employs a dynamic perspective in conjunction with innovation theory to examine the relationship between the types of business-model innovation and firm value. This study tries to examine various types of business-model innovation in high-end and low-end technology industries such as HTC and the 7-Eleven chain stores with research periods of 14 years and 32 years, respectively. The empirical results suggest that adopting radical business-model innovation in addition to expanding new target markets can successfully lead to a competitive advantage. Sustained advanced technological competences and service/product innovation are the key successful factors in high-end and low-end technology industry business-models respectively. In sum up, the business-model innovation can yield a higher market value and financial value in high-end technology industries than low-end ones.

The Study of Increasing Environmental Temperature on the Dynamical Behaviour of a Prey-Predator System: A Model

It is well recognized that the green house gases such as Chlorofluoro Carbon (CFC), CH4, CO2 etc. are responsible directly or indirectly for the increase in the average global temperature of the Earth. The presence of CFC is responsible for the depletion of ozone concentration in the atmosphere due to which the heat accompanied with the sun rays are less absorbed causing increase in the atmospheric temperature of the Earth. The gases like CH4 and CO2 are also responsible for the increase in the atmospheric temperature. The increase in the temperature level directly or indirectly affects the dynamics of interacting species systems. Therefore, in this paper a mathematical model is proposed and analysed using stability theory to asses the effects of increasing temperature due to greenhouse gases on the survival or extinction of populations in a prey-predator system. A threshold value in terms of a stress parameter is obtained which determines the extinction or existence of populations in the underlying system.

An Agent-Based Approach to Immune Modelling: Priming Individual Response

This study focuses on examining why the range of experience with respect to HIV infection is so diverse, especially in regard to the latency period. An agent-based approach in modelling the infection is used to extract high-level behaviour which cannot be obtained analytically from the set of interaction rules at the cellular level. A prototype model encompasses local variation in baseline properties, contributing to the individual disease experience, and is included in a network which mimics the chain of lymph nodes. The model also accounts for stochastic events such as viral mutations. The size and complexity of the model require major computational effort and parallelisation methods are used.

Investigation of Anti-Inflammatory, Antipyretic and Analgesic Effect of Yemeni Sidr Honey

Traditionally, Yemini Sidr honey has been reported to cure liver problems, stomach ulcers, and respiratory disorders. In this experiment, we evaluated Yemeni Sidr honey for its ability to protect inflammations caused by acetic acid and formalin -induced writhing, carrageenan and histamine-induced paw oedema in experimental rat model. Hyperpyrexia, membrane stabilizing activity, and phytochemical screening of the honey was also examined. Yemini Sidr Honey at (100, 200 and 500 mg/kg) exhibited a concentration dependant inhibition of acetic acid induced and formalin induced writhing, paw oedema induced by carrageenan & histamine, and hyperpyrexia induced by brewer's yeast, it also inhibited membrane stabilizing activity. Phytochemical screenings of the honey reveal the presence of flavonoids, steroid, alkaloids, saponins and tannins. This study suggested that Yemeni Sidr honey possess very strong antiinflammatory, analgesic and antipyretic effects and these effects would be a result of the phytochemicals present.