Evaluation of South African Plants with Acaricide Activity against Ticks

Acaricides are commonly used to control ticks but are toxic, harmful to the environment and too expensive to resource-limited farmers. Traditionally, many communities in South Africa rely on a wide range of indigenous practices to keep their livestock healthy. One of these health care practices includes the use of medicinal plants and this offers an alternative to conventional medicine. An investigation was conducted at the CSIR in South Africa, and selected indigenous plants used in communities were scientifically evaluated for the management of ticks in animals. 17 plants were selected from 239 plants used traditionally in South Africa. Two different organic extracts were prepared from the 17 samples, resulting in 34 plant samples. These were tested for efficacy against two tick species, namely Rhipicephalus microplus and Rhipicephalus turanicus. The plant extracts were also screened against Vero cells and most were found to have low cytotoxicity. This study has shown that there is potential for the development of botanicals as natural acaricides against ticks that are non-toxic and environmentally benign.

Estimating Marine Tidal Power Potential in Kenya

The rapidly diminishing fossil fuel reserves, their exorbitant cost and the increasingly apparent negative effect of fossil fuels to climate changes is a wake-up call to explore renewable energy. Wind, bio-fuel and solar power have already become staples of Kenyan electricity mix. The potential of electric power generation from marine tidal currents is enormous, with oceans covering more than 70% of the earth. However, attempts to harness marine tidal energy in Kenya, has yet to be studied thoroughly due to its promising, cyclic, reliable and predictable nature and the vast energy contained within it. The high load factors resulting from the fluid properties and the predictable resource characteristics make marine currents particularly attractive for power generation and advantageous when compared to others. Global-level resource assessments and oceanographic literature and data have been compiled in an analysis of the technology-specific requirements for tidal energy technologies and the physical resources. Temporal variations in resource intensity as well as the differences between small-scale applications are considered.

Solutions for Comfort and Safety on Vibrations Resulting from the Action of the Wind on the Building in the Form of Portico with Four Floors

With the aim of increasing the levels of comfort and security structures, the study of dynamic loads on buildings has been one of the focuses in the area of control engineering, civil engineering and architecture. Thus, this work presents a study based on simulation of the dynamics of buildings in the form of portico subjected to wind action, besides presenting an action of passive control, using for this the dynamics of the structure, consequently representing a system appropriated on environmental issues. These control systems are named the dynamic vibration absorbers.

Climate Safe House: A Community Housing Project Tackling Catastrophic Sea Level Rise in Coastal Communities

New Zealand, an island nation, has an extensive coastline peppered with small communities of iconic buildings known as Bachs. Post WWII, these modest buildings were constructed by their owners as retreats and generally were small, low cost, often using recycled material and often they fell below current acceptable building standards. In the latter part of the 20th century, real estate prices in many of these communities remained low and these areas became permanent residences for people attracted to this affordable lifestyle choice. The Blueskin Resilient Communities Trust (BRCT) is an organisation that recognises the vulnerability of communities in low lying settlements as now being prone to increased flood threat brought about by climate change and sea level rise. Some of the inhabitants of Blueskin Bay, Otago, NZ have already found their properties to be un-insurable because of increased frequency of flood events and property values have slumped accordingly. Territorial authorities also acknowledge this increased risk and have created additional compliance measures for new buildings that are less than 2 m above tidal peaks. Community resilience becomes an additional concern where inhabitants are attracted to a lifestyle associated with a specific location and its people when this lifestyle is unable to be met in a suburban or city context. Traditional models of social housing fail to provide the sense of community connectedness and identity enjoyed by the current residents of Blueskin Bay. BRCT have partnered with the Otago Polytechnic Design School to design a new form of community housing that can react to this environmental change. It is a longitudinal project incorporating participatory approaches as a means of getting people ‘on board’, to understand complex systems and co-develop solutions. In the first period, they are seeking industry support and funding to develop a transportable and fully self-contained housing model that exploits current technologies. BRCT also hope that the building will become an educational tool to highlight climate change issues facing us today. This paper uses the Climate Safe House (CSH) as a case study for education in architectural sustainability through experiential learning offered as part of the Otago Polytechnics Bachelor of Design. Students engage with the project with research methodologies, including site surveys, resident interviews, data sourced from government agencies and physical modelling. The process involves collaboration across design disciplines including product and interior design but also includes connections with industry, both within the education institution and stakeholder industries introduced through BRCT. This project offers a rich learning environment where students become engaged through project based learning within a community of practice, including architecture, construction, energy and other related fields. The design outcomes are expressed in a series of public exhibitions and forums where community input is sought in a truly participatory process.

Hand Controlled Mobile Robot Applied in Virtual Environment

By the development of IT systems, human-computer interaction is also developing even faster and newer communication methods become available in human-machine interaction. In this article, the application of a hand gesture controlled human-computer interface is being introduced through the example of a mobile robot. The control of the mobile robot is implemented in a realistic virtual environment that is advantageous regarding the aspect of different tests, parallel examinations, so the purchase of expensive equipment is unnecessary. The usability of the implemented hand gesture control has been evaluated by test subjects. According to the opinion of the testing subjects, the system can be well used, and its application would be recommended on other application fields too.

Compact Optical Sensors for Harsh Environments

Optical miniaturized sensors with remote readout are required devices for the monitoring in harsh electromagnetic environments. As an example, in turbo and hydro generators, excessively high vibrations of the end-windings can lead to dramatic damages, imposing very high, additional service costs. A significant change of the generator temperature can also be an indicator of the system failure. Continuous monitoring of vibrations, temperature, humidity, and gases is therefore mandatory. The high electromagnetic fields in the generators impose the use of non-conductive devices in order to prevent electromagnetic interferences and to electrically isolate the sensing element to the electronic readout. Metal-free sensors are good candidates for such systems since they are immune to very strong electromagnetic fields and given the fact that they are non-conductive. We have realized miniature optical accelerometer and temperature sensors for a remote sensing of the harsh environments using the common, inexpensive silicon Micro Electro-Mechanical System (MEMS) platform. Both devices show highly linear response. The accelerometer has a deviation within 1% from the linear fit when tested in a range 0 – 40 g. The temperature sensor can provide the measurement accuracy better than 1 °C in a range 20 – 150 °C. The design of other type of sensors for the environments with high electromagnetic interferences has also been discussed.

Research on the Impact on Building Temperature and Ventilation by Outdoor Shading Devices in Hot-Humid Area: Through Measurement and Simulation on an Office Building in Guangzhou

Shading devices (SDs) are widely used in buildings in the hot-humid climate areas for reducing cooling energy consumption for interior temperature, as the result of reducing the solar radiation directly. Contrasting the surface temperature of materials of SDs to the glass on the building façade could give more analysis for the shading effect. On the other side, SDs are much more used as the independence system on building façade in hot-humid area. This typical construction could have some impacts on building ventilation as well. This paper discusses the outdoor SDs’ effects on the building thermal environment and ventilation, through a set of measurements on a 2-floors office building in Guangzhou, China, which install a dynamic aluminum SD-system around the façade on 2nd-floor. The measurements recorded the in/outdoor temperature, relative humidity, velocity, and the surface temperature of the aluminum panel and the glaze. After that, a CFD simulation was conducted for deeper discussion of ventilation. In conclusion, this paper reveals the temperature differences on the different material of the façade, and finds that the velocity of indoor environment could be reduced by the outdoor SDs.

An Investigation into the Use of an Atomistic, Hermeneutic, Holistic Approach in Education Relating to the Architectural Design Process

Within architectural education, students arrive fore-armed with; their life-experience; knowledge gained from subject-based learning; their brains and more specifically their imaginations. The learning-by-doing that they embark on in studio-based/project-based learning calls for supervision that allows the student to proactively undertake research and experimentation with design solution possibilities. The degree to which this supervision includes direction is subject to debate and differing opinion. It can be argued that if the student is to learn-by-doing, then design decision making within the design process needs to be instigated and owned by the student so that they have the ability to personally reflect on and evaluate those decisions. Within this premise lies the problem that the student's endeavours can become unstructured and unfocused as they work their way into a new and complex activity. A resultant weakness can be that the design activity is compartmented and not holistic or comprehensive, and therefore, the student's reflections are consequently impoverished in terms of providing a positive, informative feedback loop. The construct proffered in this paper is that a supportive 'armature' or 'Heuristic-Framework' can be developed that facilitates a holistic approach and reflective learning. The normal explorations of architectural design comprise: Analysing the site and context, reviewing building precedents, assimilating the briefing information. However, the student can still be compromised by 'not knowing what they need to know'. The long-serving triad 'Firmness, Commodity and Delight' provides a broad-brush framework of considerations to explore and integrate into good design. If this were further atomised in subdivision formed from the disparate aspects of architectural design that need to be considered within the design process, then the student could sieve through the facts more methodically and reflectively in terms of considering their interrelationship conflict and alliances. The words facts and sieve hold the acronym of the aspects that form the Heuristic-Framework: Function, Aesthetics, Context, Tectonics, Spatial, Servicing, Infrastructure, Environmental, Value and Ecological issues. The Heuristic could be used as a Hermeneutic Model with each aspect of design being focused on and considered in abstraction and then considered in its relation to other aspect and the design proposal as a whole. Importantly, the heuristic could be used as a method for gathering information and enhancing the design brief. The more poetic, mysterious, intuitive, unconscious processes should still be able to occur for the student. The Heuristic-Framework should not be seen as comprehensive prescriptive formulaic or inhibiting to the wide exploration of possibilities and solutions within the architectural design process.

Beyond Taguchi’s Concept of the Quality Loss Function

Dr. Genichi Taguchi looked at quality in a broader term and gave an excellent definition of quality in terms of loss to society. However the scope of this definition is limited to the losses imparted by a poor quality product to the customer only and are considered during the useful life of the product and further in a certain situation this loss can even be zero. In this paper, it has been proposed that the scope of quality of a product shall be further enhanced by considering the losses imparted by a poor quality product to society at large, due to associated environmental and safety related factors, over the complete life cycle of the product. Moreover, though these losses can be further minimized with the use of techno-safety interventions, the net losses to society however can never be made zero. This paper proposes an entirely new approach towards defining product quality and is based on Taguchi’s definition of quality.

Top Management Support as an Enabling Factor for Academic Innovation through Knowledge Sharing

Educational institutions are today facing increasing pressures due to economic, political and social upheaval. This is only exacerbated by the nature of education as an intangible good which relies upon the intellectual assets of the organisation, its staff. Top management support has been acknowledged as having a positive general influence on knowledge management and creativity. However, there is a lack of models linking top management support, knowledge sharing, and innovation within higher education institutions, in general within developing countries, and particularly in Iraq. This research sought to investigate the impact of top management support on innovation through the mediating role of knowledge sharing in Iraqi private HEIs. A quantitative approach was taken and 262 valid responses were collected to test the causal relationships between top management support, knowledge sharing, and innovation. Employing structural equation modelling with AMOS v.25, the research demonstrated that knowledge sharing plays a pivotal role in the relationship between top management support and innovation. The research has produced some guidelines for researchers as well as leaders, and provided evidence to support the use of knowledge sharing to increase innovation within the higher education environment in developing countries, particularly Iraq.

Water Resources Vulnerability Assessment to Climate Change in a Semi-Arid Basin of South India

This paper examines vulnerability assessment of water resources in a semi-arid basin using the 4-step approach. The vulnerability assessment framework is developed to study the water resources vulnerability which includes the creation of GIS-based vulnerability maps. These maps represent the spatial variability of the vulnerability index. This paper introduces the 4-step approach to assess vulnerability that incorporates a new set of indicators. The approach is demonstrated using a framework composed of a precipitation data for (1975–2010) period, temperature data for (1965–2010) period, hydrological model outputs and the water resources GIS data base. The vulnerability assessment is a function of three components such as exposure, sensitivity and adaptive capacity. The current water resources vulnerability is assessed using GIS based spatio-temporal information. Rainfall Coefficient of Variation, monsoon onset and end date, rainy days, seasonality indices, temperature are selected for the criterion ‘exposure’. Water yield, ground water recharge, evapotranspiration (ET) are selected for the criterion ‘sensitivity’. Type of irrigation and storage structures are selected for the criterion ‘Adaptive capacity’. These indicators were mapped and integrated in GIS environment using overlay analysis. The five sub-basins, namely Arjunanadhi, Kousiganadhi, Sindapalli-Uppodai and Vallampatti Odai, fall under medium vulnerability profile, which indicates that the basin is under moderate stress of water resources. The paper also explores prioritization of sub-basinwise adaptation strategies to climate change based on the vulnerability indices.

GIS-Based Spatial Distribution and Evaluation of Selected Heavy Metals Contamination in Topsoil around Ecton Mining Area, Derbyshire, UK

The study area (Ecton mining area) is located in the southern part of the Peak District in Derbyshire, England. It is bounded by the River Manifold from the west. This area has been mined for a long period. As a result, huge amounts of potentially toxic metals were released into the surrounding area and are most likely to be a significant source of heavy metal contamination to the local soil, water and vegetation. In order to appraise the potential heavy metal pollution in this area, 37 topsoil samples (5-20 cm depth) were collected and analysed for their total content of Cu, Pb, Zn, Mn, Cr, Ni and V using ICP (Inductively Coupled Plasma) optical emission spectroscopy. Multivariate Geospatial analyses using the GIS technique were utilised to draw geochemical maps of the metals of interest over the study area. A few hotspot points, areas of elevated concentrations of metals, were specified, which are presumed to be the results of anthropogenic activities. In addition, the soil’s environmental quality was evaluated by calculating the Mullers’ Geoaccumulation index (I geo), which suggests that the degree of contamination of the investigated heavy metals has the following trend: Pb > Zn > Cu > Mn > Ni = Cr = V. Furthermore, the potential ecological risk, using the enrichment factor (EF), was also specified. On the basis of the calculated amount or the EF, the levels of pollution for the studied metals in the study area have the following order: Pb>Zn>Cu>Cr>V>Ni>Mn.

Surface Temperature of Asphalt Pavements with Colored Cement-Based Grouting Materials Containing Ceramic Waste Powder and Zeolite

The heat island phenomenon and extremely hot summer climate are becoming environmental problems in Japan. Cool pavements reduce the surface temperature compared to conventional asphalt pavements in the hot summer climate and improve the thermal environment in the urban area. The authors have studied cement–based grouting materials poured into voids in porous asphalt pavements to reduce the road surface temperature. For the cement–based grouting material, cement, ceramic waste powder, and natural zeolite were used. This cement–based grouting material developed reduced the road surface temperature by 20 °C or more in the hot summer season. Considering the urban landscape, this study investigates the effect of surface temperature reduction of colored cement–based grouting materials containing pigments poured into voids in porous asphalt pavements by measuring the surface temperature of asphalt pavements outdoors. The yellow color performed the same as the original cement–based grouting material containing no pigment and was thermally better performance than the other color. However, all the tested cement–based grouting materials performed well for reducing the surface temperature and for creating the urban landscape.

Analysis of Translational Ship Oscillations in a Realistic Environment

To acquire accurate ship motions at the center of gravity, a single low-cost inertial sensor is utilized and applied on board to measure ship oscillating motions. As observations, the three axes accelerations and three axes rotational rates provided by the sensor are used. The mathematical model of processing the observation data includes determination of the distance vector between the sensor and the center of gravity in x, y, and z directions. After setting up the transfer matrix from sensor’s own coordinate system to the ship’s body frame, an extended Kalman filter is applied to deal with nonlinearities between the ship motion in the body frame and the observation information in the sensor’s frame. As a side effect, the method eliminates sensor noise and other unwanted errors. Results are not only roll and pitch, but also linear motions, in particular heave and surge at the center of gravity. For testing, we resort to measurements recorded on a small vessel in a well-defined sea state. With response amplitude operators computed numerically by a commercial software (Seaway), motion characteristics are estimated. These agree well with the measurements after processing with the suggested method.

“Post-Industrial” Journalism as a Creative Industry

The context of post-industrial journalism is one in which the material circumstances of mechanical publication have been displaced by digital technologies, increasing the distance between the orthodoxy of the newsroom and the culture of journalistic writing. Content is, with growing frequency, created for delivery via the internet, publication on web-based ‘platforms’ and consumption on screen media. In this environment, the question is not ‘who is a journalist?’ but ‘what is journalism?’ today. The changes bring into sharp relief new distinctions between journalistic work and journalistic labor, providing a key insight into the current transition between the industrial journalism of the 20th century, and the post-industrial journalism of the present. In the 20th century, the work of journalists and journalistic labor went hand-in-hand as most journalists were employees of news organizations, whilst in the 21st century evidence of a decoupling of ‘acts of journalism’ (work) and journalistic employment (labor) is beginning to appear. This 'decoupling' of the work and labor that underpins journalism practice is far reaching in its implications, not least for institutional structures. Under these conditions we are witnessing the emergence of expanded ‘entrepreneurial’ journalism, based on smaller, more independent and agile - if less stable - enterprise constructs that are a feature of creative industries. Entrepreneurial journalism is realized in a range of organizational forms from social enterprise, through to profit driven start-ups and hybrids of the two. In all instances, however, the primary motif of the organization is an ideological definition of journalism. An example is the Scoop Foundation for Public Interest Journalism in New Zealand, which owns and operates Scoop Publishing Limited, a not for profit company and social enterprise that publishes an independent news site that claims to have over 500,000 monthly users. Our paper demonstrates that this journalistic work meets the ideological definition of journalism; conducted within the creative industries using an innovative organizational structure that offers a new, viable post-industrial future for journalism.

Detoxification of Hazardous Organic/Inorganic Contaminants in Automobile Shredder Residue by Multi-Functioned Nano-Size Metallic Calcium Composite

In recent years, environmental nanotechnology has risen to the forefront and the new properties and enhanced reactivates offered by nanomaterial may offer a new, low-cost paradigm to solving complex environmental pollution problems. This study assessed the synthesis and application of multi-functioned nano-size metallic calcium (nMC) composite for detoxification of hazardous inorganic (heavy metals (HMs)/organic chlorinated/brominated compound (CBCs) contaminants in automobile shredder residue (ASR). ASR residues ball milled with nMC composite can achieve about 90-100% of HMs immobilization and CBCs decomposition. The results highlight the low quantity of HMs leached from ASR residues after treatment with nMC, which was found to be lower than the standard regulatory limit for hazardous waste landfills. The use of nMC composite in a mechanochemical process to treat hazardous ASR (dry conditions) is a simple and innovative approach to remediate hazardous inorganic/organic cross-contaminates in ASR.

An Evolutionary Algorithm for Optimal Fuel-Type Configurations in Car Lines

Although environmental concern is on the rise across Europe, current market data indicate that adoption rates of environmentally friendly vehicles remain extremely low. Against this background, the aim of this paper is to a) assess preferences of European consumers for clean-fuel cars and their characteristics and b) design car lines that optimize the combination of fuel types among models in the line-up. In this direction, the authors introduce a new evolutionary mechanism and implement it to stated-preference data derived from a large-scale choice-based conjoint experiment that measures consumer preferences for various factors affecting clean-fuel vehicle (CFV) adoption. The proposed two-step methodology provides interesting insights into how new and existing fuel-types can be combined in a car line that maximizes customer satisfaction.

Markov Random Field-Based Segmentation Algorithm for Detection of Land Cover Changes Using Uninhabited Aerial Vehicle Synthetic Aperture Radar Polarimetric Images

The information on land use/land cover changing plays an essential role for environmental assessment, planning and management in regional development. Remotely sensed imagery is widely used for providing information in many change detection applications. Polarimetric Synthetic aperture radar (PolSAR) image, with the discrimination capability between different scattering mechanisms, is a powerful tool for environmental monitoring applications. This paper proposes a new boundary-based segmentation algorithm as a fundamental step for land cover change detection. In this method, first, two PolSAR images are segmented using integration of marker-controlled watershed algorithm and coupled Markov random field (MRF). Then, object-based classification is performed to determine changed/no changed image objects. Compared with pixel-based support vector machine (SVM) classifier, this novel segmentation algorithm significantly reduces the speckle effect in PolSAR images and improves the accuracy of binary classification in object-based level. The experimental results on Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) polarimetric images show a 3% and 6% improvement in overall accuracy and kappa coefficient, respectively. Also, the proposed method can correctly distinguish homogeneous image parcels.

Production of Bioethanol through Hydrolysis of Agro-Industrial Banana Crop Residues

Nowadays, the main biofuels source production as bioethanol is food crops. This means a high competition between foods and energy production. For this reason, it is necessary to take into account the use of new raw materials friendly to the environment. The main objective of this paper is to evaluate the potential of the agro-industrial banana crop residues in the production of bioethanol. A factorial design of 24 was used, the design has variables such as pH, time and concentration of hydrolysis, another variable is the time of fermentation that is of 7 or 15 days. In the hydrolysis phase, the pH is acidic (H2SO4) or basic (NaOH), the time is 30 or 15 minutes and the concentration is 0.1 or 0.5 M. It was observed that basic media, low concentrations, fermentation, and higher pretreatment times produced better performance in terms of biofuel obtained.

Understanding the Experience of the Visually Impaired towards a Multi-Sensorial Architectural Design

Visually impaired people, in their daily lives, face struggles and spatial barriers because the built environment is often designed with an extreme focus on the visual element, causing what is called architectural visual bias or ocularcentrism. The aim of the study is to holistically understand the world of the visually impaired as an attempt to extract the qualities of space that accommodate their needs, and to show the importance of multi-sensory, holistic designs for the blind. Within the framework of existential phenomenology, common themes are reached through "intersubjectivity": experience descriptions by blind people and blind architects, observation of how blind children learn to perceive their surrounding environment, and a personal lived blind-folded experience are analyzed. The extracted themes show how visually impaired people filter out and prioritize tactile (active, passive and dynamic touch), acoustic and olfactory spatial qualities respectively, and how this happened during the personal lived blind folded experience. The themes clarify that haptic and aural inclusive designs are essential to create environments suitable for the visually impaired to empower them towards an independent, safe and efficient life.