Simulation and Optimization of Mechanisms made of Micro-molded Components

The Institute of Product Development is dealing with the development, design and dimensioning of micro components and systems as a member of the Collaborative Research Centre 499 “Design, Production and Quality Assurance of Molded micro components made of Metallic and Ceramic Materials". Because of technological restrictions in the miniaturization of conventional manufacturing techniques, shape and material deviations cannot be scaled down in the same proportion as the micro parts, rendering components with relatively wide tolerance fields. Systems that include such components should be designed with this particularity in mind, often requiring large clearance. On the end, the output of such systems results variable and prone to dynamical instability. To save production time and resources, every study of these effects should happen early in the product development process and base on computer simulation to avoid costly prototypes. A suitable method is proposed here and exemplary applied to a micro technology demonstrator developed by the CRC499. It consists of a one stage planetary gear train in a sun-planet-ring configuration, with input through the sun gear and output through the carrier. The simulation procedure relies on ordinary Multi Body Simulation methods and subsequently adds other techniques to further investigate details of the system-s behavior and to predict its response. The selection of the relevant parameters and output functions followed the engineering standards for regular sized gear trains. The first step is to quantify the variability and to reveal the most critical points of the system, performed through a whole-mechanism Sensitivity Analysis. Due to the lack of previous knowledge about the system-s behavior, different DOE methods involving small and large amount of experiments were selected to perform the SA. In this particular case the parameter space can be divided into two well defined groups, one of them containing the gear-s profile information and the other the components- spatial location. This has been exploited to explore the different DOE techniques more promptly. A reduced set of parameters is derived for further investigation and to feed the final optimization process, whether as optimization parameters or as external perturbation collective. The 10 most relevant perturbation factors and 4 to 6 prospective variable parameters are considered in a new, simplified model. All of the parameters are affected by the mentioned production variability. The objective functions of interest are based on scalar output-s variability measures, so the problem becomes an optimization under robustness and reliability constrains. The study shows an initial step on the development path of a method to design and optimize complex micro mechanisms composed of wide tolerated elements accounting for the robustness and reliability of the systems- output.

A Dynamically Reconfigurable Arithmetic Circuit for Complex Number and Double Precision Number

This paper proposes an architecture of dynamically reconfigurable arithmetic circuit. Dynamic reconfiguration is a technique to realize required functions by changing hardware construction during operations. The proposed circuit is based on a complex number multiply-accumulation circuit which is used frequently in the field of digital signal processing. In addition, the proposed circuit performs real number double precision arithmetic operations. The data formats are single and double precision floating point number based on IEEE754. The proposed circuit is designed using VHDL, and verified the correct operation by simulations and experiments.

A Unique Solution for Designing Low-Cost, Heterogeneous Sensor Networks Using a Middleware Integration Platform

Proprietary sensor network systems are typically expensive, rigid and difficult to incorporate technologies from other vendors. When using competing and incompatible technologies, a non-proprietary system is complex to create because it requires significant technical expertise and effort, which can be more expensive than a proprietary product. This paper presents the Sensor Abstraction Layer (SAL) that provides middleware architectures with a consistent and uniform view of heterogeneous sensor networks, regardless of the technologies involved. SAL abstracts and hides the hardware disparities and specificities related to accessing, controlling, probing and piloting heterogeneous sensors. SAL is a single software library containing a stable hardware-independent interface with consistent access and control functions to remotely manage the network. The end-user has near-real-time access to the collected data via the network, which results in a cost-effective, flexible and simplified system suitable for novice users. SAL has been used for successfully implementing several low-cost sensor network systems.

Towards an Understanding of how Information Technology Enables Innovation – The Innovators- Perceptions

This research attempts to explore gaps in Information Systems (IS) and innovation literatures by developing a model of Information Technology (IT) capability in enabling innovation. The research was conducted by using semi-structured interview with six innovators in business consulting, financial, healthcare and academic organizations. The interview results suggest four elements of ITenabled innovation capability which are information (ability to capture ideas and knowledge), connectivity (ability to bridge geographical boundary and mobilize human resources), communication (ability to attain and engage relationships between human resources) and transformation (ability to change the functions and process integrations) in defining IT-enabled innovation platform. The results also suggests innovators- roles and IT capability.

A Set Theory Based Factoring Technique and Its Use for Low Power Logic Design

Factoring Boolean functions is one of the basic operations in algorithmic logic synthesis. A novel algebraic factorization heuristic for single-output combinatorial logic functions is presented in this paper and is developed based on the set theory paradigm. The impact of factoring is analyzed mainly from a low power design perspective for standard cell based digital designs in this paper. The physical implementation of a number of MCNC/IWLS combinational benchmark functions and sub-functions are compared before and after factoring, based on a simple technology mapping procedure utilizing only standard gate primitives (readily available as standard cells in a technology library) and not cells corresponding to optimized complex logic. The power results were obtained at the gate-level by means of an industry-standard power analysis tool from Synopsys, targeting a 130nm (0.13μm) UMC CMOS library, for the typical case. The wire-loads were inserted automatically and the simulations were performed with maximum input activity. The gate-level simulations demonstrate the advantage of the proposed factoring technique in comparison with other existing methods from a low power perspective, for arbitrary examples. Though the benchmarks experimentation reports mixed results, the mean savings in total power and dynamic power for the factored solution over a non-factored solution were 6.11% and 5.85% respectively. In terms of leakage power, the average savings for the factored forms was significant to the tune of 23.48%. The factored solution is expected to better its non-factored counterpart in terms of the power-delay product as it is well-known that factoring, in general, yields a delay-efficient multi-level solution.

Using a Semantic Self-Organising Web Page-Ranking Mechanism for Public Administration and Education

In the proposed method for Web page-ranking, a novel theoretic model is introduced and tested by examples of order relationships among IP addresses. Ranking is induced using a convexity feature, which is learned according to these examples using a self-organizing procedure. We consider the problem of selforganizing learning from IP data to be represented by a semi-random convex polygon procedure, in which the vertices correspond to IP addresses. Based on recent developments in our regularization theory for convex polygons and corresponding Euclidean distance based methods for classification, we develop an algorithmic framework for learning ranking functions based on a Computational Geometric Theory. We show that our algorithm is generic, and present experimental results explaining the potential of our approach. In addition, we explain the generality of our approach by showing its possible use as a visualization tool for data obtained from diverse domains, such as Public Administration and Education.

Management of Multimedia Contents for Distributed e-Learning System

We have developed a distributed asynchronous Web based training system. In order to improve the scalability and robustness of this system, all contents and functions are realized on mobile agents. These agents are distributed to computers, and they can use a Peer to Peer network that modified Content-Addressable Network. In the proposed system, only text data can be included in a exercise. To make our proposed system more useful, the mechanism that it not only adapts to multimedia data but also it doesn-t influence the user-s learning even if the size of exercise becomes large is necessary.

An Autonomous Collaborative Forecasting System Implementation – The First Step towards Successful CPFR System

In the past decade, artificial neural networks (ANNs) have been regarded as an instrument for problem-solving and decision-making; indeed, they have already done with a substantial efficiency and effectiveness improvement in industries and businesses. In this paper, the Back-Propagation neural Networks (BPNs) will be modulated to demonstrate the performance of the collaborative forecasting (CF) function of a Collaborative Planning, Forecasting and Replenishment (CPFR®) system. CPFR functions the balance between the sufficient product supply and the necessary customer demand in a Supply and Demand Chain (SDC). Several classical standard BPN will be grouped, collaborated and exploited for the easy implementation of the proposed modular ANN framework based on the topology of a SDC. Each individual BPN is applied as a modular tool to perform the task of forecasting SKUs (Stock-Keeping Units) levels that are managed and supervised at a POS (point of sale), a wholesaler, and a manufacturer in an SDC. The proposed modular BPN-based CF system will be exemplified and experimentally verified using lots of datasets of the simulated SDC. The experimental results showed that a complex CF problem can be divided into a group of simpler sub-problems based on the single independent trading partners distributed over SDC, and its SKU forecasting accuracy was satisfied when the system forecasted values compared to the original simulated SDC data. The primary task of implementing an autonomous CF involves the study of supervised ANN learning methodology which aims at making “knowledgeable" decision for the best SKU sales plan and stocks management.

Promoting Mathematical Understanding Using ICT in Teaching and Learning

Information and Communication Technologies (ICT) in mathematical education is a very active field of research and innovation, where learning is understood to be meaningful and grasping multiple linked representation rather than rote memorization, a great amount of literature offering a wide range of theories, learning approaches, methodologies and interpretations, are generally stressing the potentialities for teaching and learning using ICT. Despite the utilization of new learning approaches with ICT, students experience difficulties in learning concepts relevant to understanding mathematics, much remains unclear about the relationship between the computer environment, the activities it might support, and the knowledge that might emerge from such activities. Many questions that might arise in this regard: to what extent does the use of ICT help students in the process of understanding and solving tasks or problems? Is it possible to identify what aspects or features of students' mathematical learning can be enhanced by the use of technology? This paper will highlight the interest of the integration of information and communication technologies (ICT) into the teaching and learning of mathematics (quadratic functions), it aims to investigate the effect of four instructional methods on students- mathematical understanding and problem solving. Quantitative and qualitative methods are used to report about 43 students in middle school. Results showed that mathematical thinking and problem solving evolves as students engage with ICT activities and learn cooperatively.

Software Maintenance Severity Prediction for Object Oriented Systems

As the majority of faults are found in a few of its modules so there is a need to investigate the modules that are affected severely as compared to other modules and proper maintenance need to be done in time especially for the critical applications. As, Neural networks, which have been already applied in software engineering applications to build reliability growth models predict the gross change or reusability metrics. Neural networks are non-linear sophisticated modeling techniques that are able to model complex functions. Neural network techniques are used when exact nature of input and outputs is not known. A key feature is that they learn the relationship between input and output through training. In this present work, various Neural Network Based techniques are explored and comparative analysis is performed for the prediction of level of need of maintenance by predicting level severity of faults present in NASA-s public domain defect dataset. The comparison of different algorithms is made on the basis of Mean Absolute Error, Root Mean Square Error and Accuracy Values. It is concluded that Generalized Regression Networks is the best algorithm for classification of the software components into different level of severity of impact of the faults. The algorithm can be used to develop model that can be used for identifying modules that are heavily affected by the faults.

A Localized Interpolation Method Using Radial Basis Functions

Finding the interpolation function of a given set of nodes is an important problem in scientific computing. In this work a kind of localization is introduced using the radial basis functions which finds a sufficiently smooth solution without consuming large amount of time and computer memory. Some examples will be presented to show the efficiency of the new method.

Realization of Design Features for Linear Flow Splitting in NX 6

Within the collaborative research center 666 a new product development approach and the innovative manufacturing method of linear flow splitting are being developed. So far the design process is supported by 3D-CAD models utilizing User Defined Features in standard CAD-Systems. This paper now presents new functions for generating 3D-models of integral sheet metal products with bifurcations using Siemens PLM NX 6. The emphasis is placed on design and semi-automated insertion of User Defined Features. Therefore User Defined Features for both, linear flow splitting and its derivative linear bend splitting, were developed. In order to facilitate the modeling process, an application was developed that guides through the insertion process. Its usability and dialog layout adapt known standard features. The work presented here has significant implications on the quality, accurateness and efficiency of the product generation process of sheet metal products with higher order bifurcations.

A Kernel Classifier using Linearised Bregman Iteration

In this paper we introduce a novel kernel classifier based on a iterative shrinkage algorithm developed for compressive sensing. We have adopted Bregman iteration with soft and hard shrinkage functions and generalized hinge loss for solving l1 norm minimization problem for classification. Our experimental results with face recognition and digit classification using SVM as the benchmark have shown that our method has a close error rate compared to SVM but do not perform better than SVM. We have found that the soft shrinkage method give more accuracy and in some situations more sparseness than hard shrinkage methods.

Noise Analysis of Single-Ended Input Differential Amplifier using Stochastic Differential Equation

In this paper, we analyze the effect of noise in a single- ended input differential amplifier working at high frequencies. Both extrinsic and intrinsic noise are analyzed using time domain method employing techniques from stochastic calculus. Stochastic differential equations are used to obtain autocorrelation functions of the output noise voltage and other solution statistics like mean and variance. The analysis leads to important design implications and suggests changes in the device parameters for improved noise characteristics of the differential amplifier.

On Finite Wordlength Properties of Block-Floating-Point Arithmetic

A special case of floating point data representation is block floating point format where a block of operands are forced to have a joint exponent term. This paper deals with the finite wordlength properties of this data format. The theoretical errors associated with the error model for block floating point quantization process is investigated with the help of error distribution functions. A fast and easy approximation formula for calculating signal-to-noise ratio in quantization to block floating point format is derived. This representation is found to be a useful compromise between fixed point and floating point format due to its acceptable numerical error properties over a wide dynamic range.

Shannon-Weaver Biodiversity of Neutrophils in Fractal Networks of Immunofluorescence for Medical Diagnostics

We develop new nonlinear methods of immunofluorescence analysis for a sensitive technology of respiratory burst reaction of DNA fluorescence due to oxidative activity in the peripheral blood neutrophils. Histograms in flow cytometry experiments represent a fluorescence flashes frequency as functions of fluorescence intensity. We used the Shannon-Weaver index for definition of neutrophils- biodiversity and Hurst index for definition of fractal-s correlations in immunofluorescence for different donors, as the basic quantitative criteria for medical diagnostics of health status. We analyze frequencies of flashes, information, Shannon entropies and their fractals in immunofluorescence networks due to reduction of histogram range. We found the number of simplest universal correlations for biodiversity, information and Hurst index in diagnostics and classification of pathologies for wide spectra of diseases. In addition is determined the clear criterion of a common immunity and human health status in a form of yes/no answers type. These answers based on peculiarities of information in immunofluorescence networks and biodiversity of neutrophils. Experimental data analysis has shown the existence of homeostasis for information entropy in oxidative activity of DNA in neutrophil nuclei for all donors.

Lagrangian Method for Solving Unsteady Gas Equation

In this paper we propose, a Lagrangian method to solve unsteady gas equation which is a nonlinear ordinary differential equation on semi-infnite interval. This approach is based on Modified generalized Laguerre functions. This method reduces the solution of this problem to the solution of a system of algebraic equations. We also compare this work with some other numerical results. The findings show that the present solution is highly accurate.

Study of Integrated Vehicle Image System Including LDW, FCW, and AFS

The objective of this research is to develop an advanced driver assistance system characterized with the functions of lane departure warning (LDW), forward collision warning (FCW) and adaptive front-lighting system (AFS). The system is mainly configured a CCD/CMOS camera to acquire the images of roadway ahead in association with the analysis made by an image-processing unit concerning the lane ahead and the preceding vehicles. The input image captured by a camera is used to recognize the lane and the preceding vehicle positions by image detection and DROI (Dynamic Range of Interesting) algorithms. Therefore, the system is able to issue real-time auditory and visual outputs of warning when a driver is departing the lane or driving too close to approach the preceding vehicle unwittingly so that the danger could be prevented from occurring. During the nighttime, in addition to the foregoing warning functions, the system is able to control the bending light of headlamp to provide an immediate light illumination when making a turn at a curved lane and adjust the level automatically to reduce the lighting interference against the oncoming vehicles driving in the opposite direction by the curvature of lane and the vanishing point estimations. The experimental results show that the integrated vehicle image system is robust to most environments such as the lane detection and preceding vehicle detection average accuracy performances are both above 90 %.

A Nodal Transmission Pricing Model based on Newly Developed Expressions of Real and Reactive Power Marginal Prices in Competitive Electricity Markets

In competitive electricity markets all over the world, an adoption of suitable transmission pricing model is a problem as transmission segment still operates as a monopoly. Transmission pricing is an important tool to promote investment for various transmission services in order to provide economic, secure and reliable electricity to bulk and retail customers. The nodal pricing based on SRMC (Short Run Marginal Cost) is found extremely useful by researchers for sending correct economic signals. The marginal prices must be determined as a part of solution to optimization problem i.e. to maximize the social welfare. The need to maximize the social welfare subject to number of system operational constraints is a major challenge from computation and societal point of views. The purpose of this paper is to present a nodal transmission pricing model based on SRMC by developing new mathematical expressions of real and reactive power marginal prices using GA-Fuzzy based optimal power flow framework. The impacts of selecting different social welfare functions on power marginal prices are analyzed and verified with results reported in literature. Network revenues for two different power systems are determined using expressions derived for real and reactive power marginal prices in this paper.

Experiments on Element and Document Statistics for XML Retrieval

This paper presents an information retrieval model on XML documents based on tree matching. Queries and documents are represented by extended trees. An extended tree is built starting from the original tree, with additional weighted virtual links between each node and its indirect descendants allowing to directly reach each descendant. Therefore only one level separates between each node and its indirect descendants. This allows to compare the user query and the document with flexibility and with respect to the structural constraints of the query. The content of each node is very important to decide weither a document element is relevant or not, thus the content should be taken into account in the retrieval process. We separate between the structure-based and the content-based retrieval processes. The content-based score of each node is commonly based on the well-known Tf × Idf criteria. In this paper, we compare between this criteria and another one we call Tf × Ief. The comparison is based on some experiments into a dataset provided by INEX1 to show the effectiveness of our approach on one hand and those of both weighting functions on the other.