Performance Analysis of Genetic Algorithm with kNN and SVM for Feature Selection in Tumor Classification

Tumor classification is a key area of research in the field of bioinformatics. Microarray technology is commonly used in the study of disease diagnosis using gene expression levels. The main drawback of gene expression data is that it contains thousands of genes and a very few samples. Feature selection methods are used to select the informative genes from the microarray. These methods considerably improve the classification accuracy. In the proposed method, Genetic Algorithm (GA) is used for effective feature selection. Informative genes are identified based on the T-Statistics, Signal-to-Noise Ratio (SNR) and F-Test values. The initial candidate solutions of GA are obtained from top-m informative genes. The classification accuracy of k-Nearest Neighbor (kNN) method is used as the fitness function for GA. In this work, kNN and Support Vector Machine (SVM) are used as the classifiers. The experimental results show that the proposed work is suitable for effective feature selection. With the help of the selected genes, GA-kNN method achieves 100% accuracy in 4 datasets and GA-SVM method achieves in 5 out of 10 datasets. The GA with kNN and SVM methods are demonstrated to be an accurate method for microarray based tumor classification.

A Study of Factors Influencing the Improvement of Technology Business Incubator's Effectiveness: An Explanatory Model

In Both developed and developing countries, governments play a basic role in making policies, programs and instruments which support the development of micro, small and medium enterprises. One of the mechanisms employed to nurture small firms for more than two decades is business incubation. One of the mechanisms employed to nurture small firms for more than two decades is technology business incubation. The main aim of this research was to establish influencing factors in Technology Business Incubator's effectiveness and their explanatory model. Therefore, among 56 Technology Business Incubators in Iran, 32 active incubators were selected and by stratified random sampling, 528 start-ups were chosen. The validity of research questionnaires was determines by expert consensus, item analysis and factor analysis; and their reliability calculated by Cronbach-s alpha. Data analysis was then made through SPSS and LISREL soft wares. Both organizational procedures and entrepreneurial behaviors were the meaningful mediators. Organizational procedures with (P < .01, β =0.45) was stronger mediator for the improvement of Technology Business Incubator's effectiveness comparing to entrepreneurial behavior with (P < .01, β =0.36).

Inhibition Effect of Brazilin to Human Bladder Cancer Cell Line T24

The inhibition effect of brazilin to human bladder tumor cell line T24 in vitro and in vivo was studied. The results of the in vitro experiments showed that brazilin has strong inhibition activity on the target cells. The inhibition ratio of 100 μg/mL brazilin and 100 μg/mL mitomycin to the target cells was 90.90 % and 63.24 % respectively, which showed that brazilin has higher inhibition activity than mitomycin under the same concentration. Brazilin could induce cell apoptosis in T24 cells. Significant antitumor activity of brazilin was also showed in the animals experiments. The life extention rate of 200 mg/mL, 300 mg/kg, and 400 mg/kg brazilin intraperitoneally injected into Balb/c-nu-nu nude mice that with human bladder cancer were 51.50 %, 56.90 %, and 58.42 %(P

Bio-mechanical Analysis of Human Joints and Extension of the Study to Robot

In this paper, the bio-mechanical analysis of human joints is carried out and the study is extended to the robot manipulator. This study will first focus on the kinematics of human arm which include the movement of each joint in shoulder, wrist, elbow and finger complexes. Those analyses are then extended to the design of a human robot manipulator. A simulator is built for Direct Kinematics and Inverse Kinematics of human arm. In the simulation of Direct Kinematics, the human joint angles can be inserted, while the position and orientation of each finger tips (end-effector) are shown. Inverse Kinematics does the reverse of the Direct Kinematics. Based on previous materials obtained from kinematics analysis, the human manipulator joints can be designed to follow prescribed position trajectories.

Preliminary Overview of Data Mining Technology for Knowledge Management System in Institutions of Higher Learning

Data mining has been integrated into application systems to enhance the quality of the decision-making process. This study aims to focus on the integration of data mining technology and Knowledge Management System (KMS), due to the ability of data mining technology to create useful knowledge from large volumes of data. Meanwhile, KMS vitally support the creation and use of knowledge. The integration of data mining technology and KMS are popularly used in business for enhancing and sustaining organizational performance. However, there is a lack of studies that applied data mining technology and KMS in the education sector; particularly students- academic performance since this could reflect the IHL performance. Realizing its importance, this study seeks to integrate data mining technology and KMS to promote an effective management of knowledge within IHLs. Several concepts from literature are adapted, for proposing the new integrative data mining technology and KMS framework to an IHL.

Discrete Modified Internal Model Control for a nth-order Plant with an Integrator and Dead-time

This paper deals with a design method of a discrete modified Internal Model Control (IMC) for a plant with an integrator and dead time. If there is a load disturbance in the input or output side of the plant, the proposed control system can eliminate the steady-state error caused by it. The disturbance compensator in this method is simple and its order is low regardless of that of a plant. The simulation studies show that the proposed method has superior performance for a load disturbance rejection and robustness.

A Comparison of Different Soft Computing Models for Credit Scoring

It has become crucial over the years for nations to improve their credit scoring methods and techniques in light of the increasing volatility of the global economy. Statistical methods or tools have been the favoured means for this; however artificial intelligence or soft computing based techniques are becoming increasingly preferred due to their proficient and precise nature and relative simplicity. This work presents a comparison between Support Vector Machines and Artificial Neural Networks two popular soft computing models when applied to credit scoring. Amidst the different criteria-s that can be used for comparisons; accuracy, computational complexity and processing times are the selected criteria used to evaluate both models. Furthermore the German credit scoring dataset which is a real world dataset is used to train and test both developed models. Experimental results obtained from our study suggest that although both soft computing models could be used with a high degree of accuracy, Artificial Neural Networks deliver better results than Support Vector Machines.

Minimal Critical Sets of Inertias for Irreducible Zero-nonzero Patterns of Order 3

If there exists a nonempty, proper subset S of the set of all (n + 1)(n + 2)/2 inertias such that S Ôèå i(A) is sufficient for any n × n zero-nonzero pattern A to be inertially arbitrary, then S is called a critical set of inertias for zero-nonzero patterns of order n. If no proper subset of S is a critical set, then S is called a minimal critical set of inertias. In [3], Kim, Olesky and Driessche identified all minimal critical sets of inertias for 2 × 2 zero-nonzero patterns. Identifying all minimal critical sets of inertias for n × n zero-nonzero patterns with n ≥ 3 is posed as an open question in [3]. In this paper, all minimal critical sets of inertias for 3 × 3 zero-nonzero patterns are identified. It is shown that the sets {(0, 0, 3), (3, 0, 0)}, {(0, 0, 3), (0, 3, 0)}, {(0, 0, 3), (0, 1, 2)}, {(0, 0, 3), (1, 0, 2)}, {(0, 0, 3), (2, 0, 1)} and {(0, 0, 3), (0, 2, 1)} are the only minimal critical sets of inertias for 3 × 3 irreducible zerononzero patterns.

Optimal DG Placement in Distribution systems Using Cost/Worth Analysis

DG application has received increasing attention during recent years. The impact of DG on various aspects of distribution system operation, such as reliability and energy loss, depend highly on DG location in distribution feeder. Optimal DG placement is an important subject which has not been fully discussed yet. This paper presents an optimization method to determine optimal DG placement, based on a cost/worth analysis approach. This method considers technical and economical factors such as energy loss, load point reliability indices and DG costs, and particularly, portability of DG. The proposed method is applied to a test system and the impacts of different parameters such as load growth rate and load forecast uncertainty (LFU) on optimum DG location are studied.

An AHP-Delphi Multi-Criteria Usage Cases Model with Application to Citrogypsum Decisions, Case Study: Kimia Gharb Gostar Industries Company

Today, advantage of biotechnology especially in environmental issues compared to other technologies is irrefragable. Kimia Gharb Gostar Industries Company, as a largest producer of citric acid in Middle East, applies biotechnology for this goal. Citrogypsum is a by–product of citric acid production and it considered as a valid residuum of this company. At this paper summary of acid citric production and condition of Citrogypsum production in company were introduced in addition to defmition of Citrogypsum production and its applications in world. According to these information and evaluation of present conditions about Iran needing to Citrogypsum, the best priority was introduced and emphasized on strategy selection and proper programming for self-sufficiency. The Delphi technique was used to elicit expert opinions about criteria for evaluating the usages. The criteria identified by the experts were profitability, capacity of production, the degree of investment, marketable, production ease and time production. The Analytical Hierarchy Process (ARP) and Expert Choice software were used to compare the alternatives on the criteria derived from the Delphi process.

An Advanced Approach Based on Artificial Neural Networks to Identify Environmental Bacteria

Environmental micro-organisms include a large number of taxa and some species that are generally considered nonpathogenic, but can represent a risk in certain conditions, especially for elderly people and immunocompromised individuals. Chemotaxonomic identification techniques are powerful tools for environmental micro-organisms, and cellular fatty acid methyl esters (FAME) content is a powerful fingerprinting identification technique. A system based on an unsupervised artificial neural network (ANN) was set up using the fatty acid profiles of standard bacterial strains, obtained by gas-chromatography, used as learning data. We analysed 45 certified strains belonging to Acinetobacter, Aeromonas, Alcaligenes, Aquaspirillum, Arthrobacter, Bacillus, Brevundimonas, Enterobacter, Flavobacterium, Micrococcus, Pseudomonas, Serratia, Shewanella and Vibrio genera. A set of 79 bacteria isolated from a drinking water line (AMGA, the major water supply system in Genoa) were used as an example for identification compared to standard MIDI method. The resulting ANN output map was found to be a very powerful tool to identify these fresh isolates.

Clubs Forming on Crazyvote -The Blurred Social Boundary Between Online Communities and the Real World

With the rapid growth and development of information and communication technology, the Internet has played a definite and irreplaceable role in people-s social lives in Taiwan like in other countries. In July 2008, on a general social website, an unexpected phenomenon was noticed – that there were more than one hundred users who started forming clubs voluntarily and having face-to-face gatherings for specific purposes. In this study, it-s argued whether or not teenagers- social contact on the Internet is involved in their life context, and tried to reveal the teenagers- social preferences, values, and needs, which merge with and influence teenagers- social activities. Therefore, the study conducts multiple user experience research methods, which include practical observations and qualitative analysis by contextual inquiries and in-depth interviews. Based on the findings, several design implications for software related to social interactions and cultural inheritance are offered. It is concluded that the inherent values of a social behaviors might be a key issue in developing computer-mediated communication or interaction designs in the future.

Fuzzy Metric Approach for Fuzzy Time Series Forecasting based on Frequency Density Based Partitioning

In the last 15 years, a number of methods have been proposed for forecasting based on fuzzy time series. Most of the fuzzy time series methods are presented for forecasting of enrollments at the University of Alabama. However, the forecasting accuracy rates of the existing methods are not good enough. In this paper, we compared our proposed new method of fuzzy time series forecasting with existing methods. Our method is based on frequency density based partitioning of the historical enrollment data. The proposed method belongs to the kth order and time-variant methods. The proposed method can get the best forecasting accuracy rate for forecasting enrollments than the existing methods.

Recent Developments in Speed Control System of Pipeline PIGs for Deepwater Pipeline Applications

Pipeline infrastructures normally represent high cost of investment and the pipeline must be free from risks that could cause environmental hazard and potential threats to personnel safety. Pipeline integrity such monitoring and management become very crucial to provide unimpeded transportation and avoiding unnecessary production deferment. Thus proper cleaning and inspection is the key to safe and reliable pipeline operation and plays an important role in pipeline integrity management program and has become a standard industry procedure. In view of this, understanding the motion (dynamic behavior), prediction and control of the PIG speed is important in executing pigging operation as it offers significant benefits, such as estimating PIG arrival time at receiving station, planning for suitable pigging operation, and improves efficiency of pigging tasks. The objective of this paper is to review recent developments in speed control system of pipeline PIGs. The review carried out would serve as an industrial application in a form of quick reference of recent developments in pipeline PIG speed control system, and further initiate others to add-in/update the list in the future leading to knowledge based data, and would attract active interest of others to share their view points.

Effects of the Sintering Process on Properties of Triaxial Electrical Porcelain from Ugandan Ceramic Minerals

Porcelain specimens were fired at 6C/min to 1250C (dwell time 0.5-3h) and cooled at 6C/min to room temperature. Additionally, three different slower firing/cooling cycles were tried. Sintering profile and effects on MOR, crystalline phase content and morphology were investigated using dilatometry, 4-point bending strength, XRD and FEG-SEM respectively. Industrial-sized specimens prepared using the promising cycle were tested basing on the ANSI standards. Increasing dwell time from 1h to 3h at peak temperature of 1250C resulted in neither a significant effect on the quartz and mullite content nor MOR. Reducing the firing/cooling rate to below 6C/min, for peak temperature of 1250C (dwell time of 1h) does not result in improvement of strength of porcelain. The industrial sized specimen exhibited flashover voltages of 20.3kV (dry) and 9.3kV (wet) respectively, transverse strength of 12.5kN and bulk density of 2.27g/cm3, which are satisfactory. There was however dye penetration during porosity test. KeywordsDwell time, Microstructure, Porcelain, Strength.

Integration of Support Vector Machine and Bayesian Neural Network for Data Mining and Classification

Several combinations of the preprocessing algorithms, feature selection techniques and classifiers can be applied to the data classification tasks. This study introduces a new accurate classifier, the proposed classifier consist from four components: Signal-to- Noise as a feature selection technique, support vector machine, Bayesian neural network and AdaBoost as an ensemble algorithm. To verify the effectiveness of the proposed classifier, seven well known classifiers are applied to four datasets. The experiments show that using the suggested classifier enhances the classification rates for all datasets.

The Influence of Some Polyphenols on Human Erythrocytes Glutathione S-Transferase Activity

Glutathione S-transferase was purified from human erythrocytes and effects of some polyphenols were investigated on the enzyme activity. The purification procedure was performed on Glutathione-Agarose affinity chromatography after preparation of erythrocytes hemolysate with a yield of 81%. The purified enzyme showed a single band on the SDS-PAGE. The effects of some poliphenolic compounds such as catechin, dopa, dopamine, progallol and catechol were examined on the in vitro GST activity. Catechin was determined to be inhibitor for the enzyme, but others were not effective on the enzyme as inhibitors or activators. IC50 value -the concentration of inhibitor which reduces enzyme activity by 50%- was estimated to be 10 mM. Ki constants were also calculated as 6.38 ± 0,70 mM with GSH substrate, and 3.86 ± 0,78 mM with CDNB substrate using the equations of graphs for the inhibitor, and its inhibition type was determined as non-competitive.

Temperature Sensor IC Design for Intracranial Monitoring Device

A precision CMOS chopping amplifier is adopted in this work to improve a CMOS temperature sensor high sensitive enough for intracranial temperature monitoring. An amplified temperature sensitivity of 18.8 ± 3*0.2 mV/oC is attained over the temperature range from 20 oC to 80 oC from a given 10 samples of the same wafer. The analog frontend design outputs the temperature dependent and the temperature independent signals which can be directly interfaced to a 10 bit ADC to accomplish an accurate temperature instrumentation system.

Protein Graph Partitioning by Mutually Maximization of cycle-distributions

The classification of the protein structure is commonly not performed for the whole protein but for structural domains, i.e., compact functional units preserved during evolution. Hence, a first step to a protein structure classification is the separation of the protein into its domains. We approach the problem of protein domain identification by proposing a novel graph theoretical algorithm. We represent the protein structure as an undirected, unweighted and unlabeled graph which nodes correspond the secondary structure elements of the protein. This graph is call the protein graph. The domains are then identified as partitions of the graph corresponding to vertices sets obtained by the maximization of an objective function, which mutually maximizes the cycle distributions found in the partitions of the graph. Our algorithm does not utilize any other kind of information besides the cycle-distribution to find the partitions. If a partition is found, the algorithm is iteratively applied to each of the resulting subgraphs. As stop criterion, we calculate numerically a significance level which indicates the stability of the predicted partition against a random rewiring of the protein graph. Hence, our algorithm terminates automatically its iterative application. We present results for one and two domain proteins and compare our results with the manually assigned domains by the SCOP database and differences are discussed.

Experimental Investigation of Chatter Vibrations in Facing and Turning Processes

This paper investigates the occurrence of regenerative chatter vibrations in facing and turning processes. Orthogonal turning (facing) and normal turning experiments are carried out under stable as well as in the presence of controlled chatter vibrations. The effects of chatter vibrations on various sensor signals are captured and analyzed using frequency domain methods, which successfully detected the chatter vibrations close to the dominant mode of the machine tool system.