The Flora of Bozdağ (Sızma – Konya – Turkey) and Its Environs

The flora of Bozdağ (Konya) and its surroundings were investigated between 2003 and 2005 years; 700 herbarium specimens belonging to 482 taxa, 257 genera and 57 families were collected and identified from the area. The families which have the most taxa in research area are Asteraceae 67 (14.0%), Fabaceae 60 (12.6%), Lamiaceae 57 (11.9%), Brassicaceae 34 (7.1%), Poaceae 30 (6.3%), Rosaceae 24 (5.0%), Caryophyllaceae 23 (4.8%), Liliaceae 19 (4.0%), Boraginaceae 17 (3.6%), and Apiaceae 13 (2.7%). The research area is in the district of Konya and is in the B4 square according to the Grid System. The phytogeographic elements are represented in the study area as follows; Irano-Turanian 91 (18.9%), Mediterranean 72 (14.9%), Euro-Siberian 21 (4.3%). The phytogeographic regions of 273 (56.6%) taxa are either multi-regional or unknown. The number of endemic taxa is 79 (16.3%).

Finite Element Analysis of Oil-Lubricated Elliptical Journal Bearings

Fixed-geometry hydrodynamic journal bearings are one of the best supporting systems for several applications of rotating machinery. Cylindrical journal bearings present excellent loadcarrying capacity and low manufacturing costs, but they are subjected to the oil-film instability at high speeds. An attempt of overcoming this instability problem has been the development of non-circular journal bearings. This work deals with an analysis of oil-lubricated elliptical journal bearings using the finite element method. Steadystate and dynamic performance characteristics of elliptical bearings are rendered by zeroth- and first-order lubrication equations obtained through a linearized perturbation method applied on the classical Reynolds equation. Four-node isoparametric rectangular finite elements are employed to model the bearing thin film flow. Curves of elliptical bearing load capacity and dynamic force coefficients are rendered at several operating conditions. The results presented in this work demonstrate the influence of the bearing ellipticity on its performance at different loading conditions.

Accounting Performance of the Leading Companies in the Construction Sector in Brazil during the Period 2009-2012

The construction industry has been demonstrating increased growth and importance in Brazil’s national economic development. This study aims to evaluate the financial performance of the leading companies in the construction sector in Brazil in the period from 2009 to 2012. An analysis is made of the capital structure, liquidity, and profitability of the six largest companies in the construction sector in Brazil: Brookfield, Cyrela, Gafisa, MRV, PDG and Rossi. The results are then compared with standard industry ratios. It was found that among the companies analyzed, MRV and Cyrela showed the best relative performance in the period under consideration.

Evaporative Air Coolers Optimization for Energy Consumption Reduction and Energy Efficiency Ratio Increment

Significant quota of Municipal Electrical Energy consumption is related to Decentralized Air Conditioning which is mostly provided by evaporative coolers. So the aim is to optimize design of air conditioners to increase their efficiencies. To achieve this goal, results of practical standardized tests for 40 evaporative coolers in different types collected and simultaneously results for same coolers based on one of EER (Energy Efficiency Ratio) modeling styles are figured out. By comparing experimental results of different coolers standardized tests with modeling results, preciseness of used model is assessed and after comparing gained preciseness with international standards based on EER for cooling capacity, aeration, and also electrical energy consumption, energy label from A (most effective) to G (less effective) is classified; finally needed methods to optimize energy consumption and coolers’ classification are provided.

Cryptography over Sextic Extension with Cubic Subfield

In this paper, we will give a cryptographic application over the integral closure O_Lof sextic extension L, namely L is an extension of Q of degree 6 in the form Q(a,b), which is a rational quadratic and monogenic extension over a pure monogenic cubic subfield K generated by a who is a root of monic irreducible polynomial of degree 2 andb is a root of irreducible polynomial of degree 3.

In Search of High Growth: Mapping out Academic Spin-Off´s Performance in Catalonia

This exploratory study gives an overview of the evolution of the main financial and performance indicators of the Academic Spin-Off’s and High Growth Academic Spin-Off’s in year 3 and year 6 after its creation in the region of Catalonia in Spain. The study compares and evaluates results of these different measures of performance and the degree of success of these companies for each University. We found that the average Catalonian Academic Spin-Off is small and have not achieved the sustainability stage at year 6. On the contrary, a small group of High Growth Academic Spin-Off’s exhibits robust performance with high profits in year 6. Our results support the need to increase selectivity and support for these companies especially near year 3, because are the ones that will bring wealth and employment. University role as an investor has rigid norms and habits that impede an efficient economic return from their ASO investment. Universities with high performance on sales and employment in year 3 not always could sustain this growth in year 6 because their ASO’s are not profitable. On the contrary, profitable ASO exhibit superior performance in all measurement indicators in year 6. We advocate the need of a balanced growth (with profits) as a way to obtain subsequent continuous growth.

Numerical Solutions of Boundary Layer Flow over an Exponentially Stretching/Shrinking Sheet with Generalized Slip Velocity

In this paper, the problem of steady laminar boundary layer flow and heat transfer over a permeable exponentially stretching/shrinking sheet with generalized slip velocity is considered. The similarity transformations are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary differential equations. The transformed equations are then solved numerically using the bvp4c function in MATLAB. Dual solutions are found for a certain range of the suction and stretching/shrinking parameters. The effects of the suction parameter, stretching/shrinking parameter, velocity slip parameter, critical shear rate and Prandtl number on the skin friction and heat transfer coefficients as well as the velocity and temperature profiles are presented and discussed.

Heat and Mass Transfer in MHD Flow of Nanofluids through a Porous Media Due to a Permeable Stretching Sheet with Viscous Dissipation and Chemical Reaction Effects

The convective heat and mass transfer in nanofluid flow through a porous media due to a permeable stretching sheet with magnetic field, viscous dissipation, chemical reaction and Soret effects are numerically investigated. Two types of nanofluids, namely Cu-water and Ag-water were studied. The governing boundary layer equations are formulated and reduced to a set of ordinary differential equations using similarity transformations and then solved numerically using the Keller box method. Numerical results are obtained for the skin friction coefficient, Nusselt number and Sherwood number as well as for the velocity, temperature and concentration profiles for selected values of the governing parameters. Excellent validation of the present numerical results has been achieved with the earlier linearly stretching sheet problems in the literature.

Investigation of Dissolution in Diammonium Hydrogen Phosphate Solutions of Gypsum

Gypsum (CaSO4.2H2O) is a mineral that is found in large quantities in the Turkey and in the World. In this study, the dissolution of this mineral in the diammonium hydrogen phosphate solutions has been studied. The dissolution and dissolution kinetics of gypsum in diammonium hydrogen phosphate solutions will be useful for evaluating of solid wastes containing gypsum. Parameters such as diammonium hydrogen phosphate concentration, temperature and stirring speed affecting on the dissolution rate of the gypsum in diammonium hydrogen phosphate solutions were investigated. In experimental studies have researched effectiveness of the selected parameters. The dissolution of gypsum were examined in two parts at low and high temperatures. The experimental results were successfully correlated by linear regression using Statistica program. Dissolution curves were evaluated shrinking core models for solidfluid systems. The activation energy was found to be 34.58 kJ/mol and 44.45 kJ/mol for the low and the high temperatures. The dissolution of gypsum was controlled by chemical reaction both low temperatures and high temperatures.

CFD Study on the Effect of Primary Air on Combustion of Simulated MSW Process in the Fixed Bed

Incineration of municipal solid waste (MSW) is one of the key scopes in the global clean energy strategy. A computational fluid dynamics (CFD) model was established in order to reveal these features of the combustion process in a fixed porous bed of MSW. Transporting equations and process rate equations of the waste bed were modeled and set up to describe the incineration process, according to the local thermal conditions and waste property characters. Gas phase turbulence was modeled using k-ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The heterogeneous reaction rates were determined using Arrhenius eddy dissipation and the Arrhenius-diffusion reaction rates. The effects of primary air flow rate and temperature in the burning process of simulated MSW are investigated experimentally and numerically. The simulation results in bed are accordant with experimental data well. The model provides detailed information on burning processes in the fixed bed, which is otherwise very difficult to obtain by conventional experimental techniques.

Effects of Kenaf and Rice Husk on Water Absorption and Flexural Properties of Kenaf/CaCO3/HDPE and Rice Husk/CaCO3/HDPE Hybrid Composites

Rice husk and kenaf filled with calcium carbonate (CaCO3) and high density polyethylene (HDPE) composite were prepared separately using twin-screw extruder at 50rpm. Different filler loading up to 30 parts of rice husk particulate and kenaf fiber were mixed with the fixed 30% amount of CaCO3 mineral filler to produce rice husk/CaCO3/HDPE and kenaf/CaCO3/HDPE hybrid composites. In this study, the effects of natural fiber for both rice husk and kenaf in CaCO3/HDPE composite on physical, mechanical and morphology properties were investigated. Field Emission Scanning Microscope (FeSEM) was used to investigate the impact fracture surfaces of the hybrid composite. The property analyses showed that water absorption increased with the presence of kenaf and rice husk fillers. Natural fibers in composite significantly influence water absorption properties due to natural characters of fibers which contain cellulose, hemicellulose and lignin structures. The result showed that 10% of additional natural fibers into hybrid composite had caused decreased flexural strength, however additional of high natural fiber (>10%) filler loading has proved to increase its flexural strength.

Numerical Simulation of the Kurtosis Effect on the EHL Problem

In this study, a computational fluid dynamics (CFD) model has been developed for studying the effect of surface roughness profile on the EHL problem. The cylinders contact geometry, meshing and calculation of the conservation of mass and momentum equations are carried out using the commercial software packages ICEMCFD and ANSYS Fluent. The user defined functions (UDFs) for density, viscosity and elastic deformation of the cylinders as the functions of pressure and temperature are defined for the CFD model. Three different surface roughness profiles are created and incorporated into the CFD model. It is found that the developed CFD model can predict the characteristics of fluid flow and heat transfer in the EHL problem, including the main parameters such as pressure distribution, minimal film thickness, viscosity, and density changes. The results obtained show that the pressure profile at the center of the contact area directly relates to the roughness amplitude. A rough surface with kurtosis value of more than 3 has greater influence over the fluctuated shape of pressure distribution than in other cases.

Teaching Ethical Behaviour: Conversational Analysis in Perspective

In the past researchers have questioned the effectiveness of ethics training in higher education. Also, there are observations that support the view that ethical behaviour (range of actions)/ethical decision making models used in the past make use of vignettes to explain ethical behaviour. The understanding remains in the perspective that these vignettes play a limited role in determining individual intentions and not actions. Some authors have also agreed that there are possibilities of differences in one’s intentions and actions. This paper makes an attempt to fill those gaps by evaluating real actions rather than intentions. In a way this study suggests the use of an experiential methodology to explore Berlo’s model of communication as an action along with orchestration of various principles. To this endeavor, an attempt was made to use conversational analysis in the pursuance of evaluating ethical decision making behaviour among students and middle level managers. The process was repeated six times with the set of an average of 15 participants. Similarities have been observed in the behaviour of students and middle level managers that calls for understanding that both the groups of individuals have no cognizance of their actual actions. The deliberations derived out of conversation were taken a step forward for meta-ethical evaluations to portray a clear picture of ethical behaviour among participants. This study provides insights for understanding demonstrated unconscious human behaviour which may fortuitously be termed both ethical and unethical.

Analyzing the Perceived Relationship between Motivation and Satisfaction for Rural Tourists in a Digital World

Rural tourism is usually associated with rural development because it has strong linkages to rural resources; but it remains underdeveloped compared to urban tourism. This underdevelopment of rural tourism serves as a motivation for this study whose aim is to examine the factors affecting the perceived satisfaction of rural tourists. The objectives of this study are: to identify and design theories and models on rural tourism satisfaction, and to empirically validate these models and theories through a survey of tourists from the Malealea Lodge which is located in the Mafeteng District, in the Mountain Kingdom of Lesotho. Data generated by the collection of questionnaires used by this survey was analyzed quantitatively using descriptive statistics and correlations in SPSS after checking the validity and the reliability of the questionnaire. The main hypothesis behind this study is the relationship between the demographics of rural tourists, their motivation, and their satisfaction, as supported by existing literature; except that motivation is measured in this study according to three dimensions: push factors, pull factors, and perceived usefulness of ICTs in the rural tourism experience. Findings from this study indicate that among the demographics factors, continent of origin and marital status influence the satisfaction of rural tourists; and their occupation affects their perceptions on the use of ICTs in rural tourism. Moreover, only pull factors were found to influence the satisfaction of rural tourists.

Semantic Enhanced Social Media Sentiments for Stock Market Prediction

Traditional document representation for classification follows Bag of Words (BoW) approach to represent the term weights. The conventional method uses the Vector Space Model (VSM) to exploit the statistical information of terms in the documents and they fail to address the semantic information as well as order of the terms present in the documents. Although, the phrase based approach follows the order of the terms present in the documents rather than semantics behind the word. Therefore, a semantic concept based approach is used in this paper for enhancing the semantics by incorporating the ontology information. In this paper a novel method is proposed to forecast the intraday stock market price directional movement based on the sentiments from Twitter and money control news articles. The stock market forecasting is a very difficult and highly complicated task because it is affected by many factors such as economic conditions, political events and investor’s sentiment etc. The stock market series are generally dynamic, nonparametric, noisy and chaotic by nature. The sentiment analysis along with wisdom of crowds can automatically compute the collective intelligence of future performance in many areas like stock market, box office sales and election outcomes. The proposed method utilizes collective sentiments for stock market to predict the stock price directional movements. The collective sentiments in the above social media have powerful prediction on the stock price directional movements as up/down by using Granger Causality test.

A Knowledge Acquisition Model Using Multi-Agents for KaaS

These days customer satisfaction plays vital role in any business. When customer searches for a product, significantly a junk of irrelevant information is what is given, leading to customer dissatisfaction. To provide exactly relevant information on the searched product, we are proposing a model of KaaS (Knowledge as a Service), which pre-processes the information using decision making paradigm using Multi-agents. Information obtained from various sources is taken to derive knowledge and they are linked to Cloud to capture new idea. The main focus of this work is to acquire relevant information (knowledge) related to product, then convert this knowledge into a service for customer satisfaction and deploy on cloud. For achieving these objectives we are have opted to use multi agents. They are communicating and interacting with each other, manipulate information, provide knowledge, to take decisions. The paper discusses about KaaS as an intelligent approach for Knowledge acquisition.

Experimental and Numerical Analysis of Built-In Thermoelectric Generator Modules with an Elliptical Pin-Fin Heat Sink

A three-dimensional numerical model of thermoelectric generator (TEG) modules attached to a large chimney plate is proposed and solved numerically using a control volume based finite difference formulation. The TEG module consists of a thermoelectric generator, an elliptical pin-fin heat sink, and a cold plate for water cooling. In the chimney, the temperature of flue gases is 450-650K. Although the TEG hot-side temperature and thus the electric power output can be increased by inserting an elliptical pin-fin heat sink into the chimney tunnel to increase the heat transfer area, the pin fin heat sink would cause extra pumping power at the same time. The main purpose of this study is to analyze the effects of geometrical parameters on the electric power output and chimney pressure drop characteristics. The effects of different operating conditions, including various inlet velocities (Vin= 1, 3, 5 m/s), inlet temperatures (Tgas = 450, 550, 650K) and different fin height (0 to 150 mm) are discussed in detail. The predicted numerical data for the power vs. current (P-I) curve are in good agreement (within 11%) with the experimental data.

Seismic Evaluation with Shear Walls and Braces for Buildings

R.C.C. buildings with dual structural system consisting of shear walls (or braces) and moment resisting frames have been widely used to resist lateral forces during earthquakes. The dual systems are designed to resist the total design lateral force in proportion to their lateral stiffness. The response of combination of braces and shear walls has not yet been studied. The combination may prove to be more effective to resist lateral forces during earthquakes. This concept has been applied to regular R.C.C. buildings provided with shear walls, braces and their combinations.

A Combined Neural Network Approach to Soccer Player Prediction

An artificial neural network is a mathematical model inspired by biological neural networks. There are several kinds of neural networks and they are widely used in many areas, such as: prediction, detection, and classification. Meanwhile, in day to day life, people always have to make many difficult decisions. For example, the coach of a soccer club has to decide which offensive player to be selected to play in a certain game. This work describes a novel Neural Network using a combination of the General Regression Neural Network and the Probabilistic Neural Networks to help a soccer coach make an informed decision.

Simulation of Solar Assisted Absorption Cooling and Electricity Generation along with Thermal Storage

Parabolic solar trough systems have seen limited deployments in cold northern climates as they are more suitable for electricity production in southern latitudes. A numerical dynamic model is developed to simulate troughs installed in cold climates and validated using a parabolic solar trough facility in Winnipeg. The model is developed in Simulink and will be utilized to simulate a trigeneration system for heating, cooling and electricity generation in remote northern communities. The main objective of this simulation is to obtain operational data of solar troughs in cold climates and use the model to determine ways to improve the economics and address cold weather issues. In this paper the validated Simulink model is applied to simulate a solar assisted absorption cooling system along with electricity generation using Organic Rankine Cycle (ORC) and thermal storage. A control strategy is employed to distribute the heated oil from solar collectors among the above three systems considering the temperature requirements. This modelling provides dynamic performance results using measured meteorological data recorded every minute at the solar facility location. The purpose of this modeling approach is to accurately predict system performance at each time step considering the solar radiation fluctuations due to passing clouds. Optimization of the controller in cold temperatures is another goal of the simulation to for example minimize heat losses in winter when energy demand is high and solar resources are low. The solar absorption cooling is modeled to use the generated heat from the solar trough system and provide cooling in summer for a greenhouse which is located next to the solar field. The results of the simulation are presented for a summer day in Winnipeg which includes comparison of performance parameters of the absorption cooling and ORC systems at different heat transfer fluid (HTF) temperatures.