Investigation of Chord Protocol in Peer to Peer-Wireless Mesh Network with Mobility

File sharing in networks is generally achieved using Peer-to-Peer (P2P) applications. Structured P2P approaches are widely used in adhoc networks due to its distributed and scalability features. Efficient mechanisms are required to handle the huge amount of data distributed to all peers. The intrinsic characteristics of P2P system makes for easier content distribution when compared to client-server architecture. All the nodes in a P2P network act as both client and server, thus, distributing data takes lesser time when compared to the client-server method. CHORD protocol is a resource routing based where nodes and data items are structured into a 1- dimensional ring. The structured lookup algorithm of Chord is advantageous for distributed P2P networking applications. However, structured approach improves lookup performance in a high bandwidth wired network it could contribute to unnecessary overhead in overlay networks leading to degradation of network performance. In this paper, the performance of existing CHORD protocol on Wireless Mesh Network (WMN) when nodes are static and dynamic is investigated.

Trabecular Texture Analysis Using Fractal Metrics for Bone Fragility Assessment

The purpose of this study is the discrimination of 28 postmenopausal with osteoporotic femoral fractures from an agematched control group of 28 women using texture analysis based on fractals. Two pre-processing approaches are applied on radiographic images; these techniques are compared to highlight the choice of the pre-processing method. Furthermore, the values of the fractal dimension are compared to those of the fractal signature in terms of the classification of the two populations. In a second analysis, the BMD measure at proximal femur was compared to the fractal analysis, the latter, which is a non-invasive technique, allowed a better discrimination; the results confirm that the fractal analysis of texture on calcaneus radiographs is able to discriminate osteoporotic patients with femoral fracture from controls. This discrimination was efficient compared to that obtained by BMD alone. It was also present in comparing subgroups with overlapping values of BMD.

Experimental Study of LPG Diffusion Flame at Elevated Preheated Air Temperatures

This paper represents an experimental study of LPG diffusion flame at elevated preheated air temperatures. The flame is stabilized in a vertical water-cooled combustor by using air swirler. An experimental test rig was designed to investigate the different operating conditions. The burner head is designed so that the LPG fuel issued centrally and surrounded by the swirling air issues from an air swirler. There are three air swirlers having the same dimensions but having different blade angles to give different swirl numbers of 0.5, 0.87 and 1.5. The combustion air was heated electrically before entering the combustor up to a temperature about 500 K. Five air to fuel mass ratios of 15, 20, 30, 40 and 50 were also studied. The effect of preheated air temperature, swirl number and air to fuel mass ratios on the temperature maps, visible flame length, high temperature region (size) and exhaust species concentrations are studied. Some results show that as the preheated air temperature increases, the volume of high temperature region also increased but the flame length decreased. Increasing the preheated air temperature, EINOx, EICO2 and EIO2 increased, while EICO decreased. Increasing the preheated air temperature from 300 to 500 K, for all air swirl numbers used, the highest increase in EINOx, EICO2 and EIO2 are 141, 4 and 65%, respectively.

Experimental Behavior of Composite Shear Walls Having L Shape Steel Sections in Boundary Regions

The Composite Shear Walls (CSW) with steel encased profiles can be used as lateral-load resisting systems for buildings that require considerable large lateral-load capacity. The aim of this work is to propose the experimental work conducted on CSW having L section folded plate (L shape steel made-up sections) as longitudinal reinforcement in boundary regions. The study in this paper present the experimental test conducted on CSW having L section folded plate as longitudinal reinforcement in boundary regions. The tested 1/3 geometric scaled CSW has aspect ratio of 3.2. L-shape structural steel materials with 2L-19x57x7mm dimensions were placed in shear wall boundary zones. The seismic behavior of CSW test specimen was investigated by evaluating and interpreting the hysteresis curves, envelope curves, rigidity and consumed energy graphs of this tested element. In addition to this, the experimental results, deformation and cracking patterns were evaluated, interpreted and suggestions of the design recommendations were proposed.

Dynamic Behavior of the Nanostructure of Load-bearing Biological Materials

Typical load-bearing biological materials like bone, mineralized tendon and shell, are biocomposites made from both organic (collagen) and inorganic (biomineral) materials. This amazing class of materials with intrinsic internally designed hierarchical structures show superior mechanical properties with regard to their weak components from which they are formed. Extensive investigations concentrating on static loading conditions have been done to study the biological materials failure. However, most of the damage and failure mechanisms in load-bearing biological materials will occur whenever their structures are exposed to dynamic loading conditions. The main question needed to be answered here is: What is the relation between the layout and architecture of the load-bearing biological materials and their dynamic behavior? In this work, a staggered model has been developed based on the structure of natural materials at nanoscale and Finite Element Analysis (FEA) has been used to study the dynamic behavior of the structure of load-bearing biological materials to answer why the staggered arrangement has been selected by nature to make the nanocomposite structure of most of the biological materials. The results showed that the staggered structures will efficiently attenuate the stress wave rather than the layered structure. Furthermore, such staggered architecture is effectively in charge of utilizing the capacity of the biostructure to resist both normal and shear loads. In this work, the geometrical parameters of the model like the thickness and aspect ratio of the mineral inclusions selected from the typical range of the experimentally observed feature sizes and layout dimensions of the biological materials such as bone and mineralized tendon. Furthermore, the numerical results validated with existing theoretical solutions. Findings of the present work emphasize on the significant effects of dynamic behavior on the natural evolution of load-bearing biological materials and can help scientists to design bioinspired materials in the laboratories.

On-line Control of the Natural and Anthropogenic Safety in Krasnoyarsk Region

This paper presents an approach of on-line control of the state of technosphere and environment objects based on the integration of Data Warehouse, OLAP and Expert systems technologies. It looks at the structure and content of data warehouse that provides consolidation and storage of monitoring data. There is a description of OLAP-models that provide a multidimensional analysis of monitoring data and dynamic analysis of principal parameters of controlled objects. The authors suggest some criteria of emergency risk assessment using expert knowledge about danger levels. It is demonstrated now some of the proposed solutions could be adopted in territorial decision making support systems. Operational control allows authorities to detect threat, prevent natural and anthropogenic emergencies and ensure a comprehensive safety of territory.

The Influence of National Culture on Business Negotiations: An Exploratory Study of Venezuelan and British Managers

Significant attention has recently been paid to the cross-cultural negotiations due to the growth of international businesses. Despite the substantial body of literature examining the influence of National Culture (NC) dimensions on negotiations, there is a lack of studies comparing the influence of NC in Latin America with a Western European countries, In particular, an extensive review of the literature revealed that a contribution to knowledge would be derived from the comparison of the influence of NC dimensions on negotiations in UK and Venezuela. The primary data was collected through qualitative interviews, to obtain an insight about the perceptions and beliefs of Venezuelan and British business managers about their negotiating styles. The findings of this study indicated that NC has a great influence on the negotiating styles. In particular, Venezuelan and British managers demonstrated to have opposed negotiating styles, affecting the way they communicate, approach people and their willingness to take risks.

Influence of Flame-Holder on Existence Important Parameters in a Duct Combustion Simulator

The effects of flame-holder position, the ratio of flame holder diameter to combustion chamber diameter and injection angle on fuel propulsive droplets sizing and effective mass fraction have been studied by a cold flow. We named the mass of fuel vapor inside the flammability limit as the effective mass fraction. An empty cylinder as well as a flame-holder which are a simulator for duct combustion has been considered. The airflow comes into the cylinder from one side and injection operation will be done by four nozzles which are located on the entrance of cylinder. To fulfill the calculations a modified version of KIVA-3V code which is a transient, three-dimensional, multiphase, multi component code for the analysis of chemically reacting flows with sprays, is used.

Gimbal Structure for the Design of 3D Flywheel System

New design of three dimensional (3D) flywheel system based on gimbal and gyro mechanics is proposed. The 3D flywheel device utilizes the rotational motion of three spherical shells and the conservation of angular momentum to achieve planar locomotion. Actuators mounted to the ring-shape frames are installed within the system to drive the spherical shells to rotate, for the purpose of steering and stabilization. Similar to the design of 2D flywheel system, it is expected that the spherical shells may function like a “flyball” to store and supply mechanical energy; additionally, in comparison with typical single-wheel and spherical robots, the 3D flywheel can be used for developing omnidirectional robotic systems with better mobility. The Lagrangian method is applied to derive the equation of motion of the 3D flywheel system, and simulation studies are presented to verify the proposed design.

Steepest Descent Method with New Step Sizes

Steepest descent method is a simple gradient method for optimization. This method has a slow convergence in heading to the optimal solution, which occurs because of the zigzag form of the steps. Barzilai and Borwein modified this algorithm so that it performs well for problems with large dimensions. Barzilai and Borwein method results have sparked a lot of research on the method of steepest descent, including alternate minimization gradient method and Yuan method. Inspired by previous works, we modified the step size of the steepest descent method. We then compare the modification results against the Barzilai and Borwein method, alternate minimization gradient method and Yuan method for quadratic function cases in terms of the iterations number and the running time. The average results indicate that the steepest descent method with the new step sizes provide good results for small dimensions and able to compete with the results of Barzilai and Borwein method and the alternate minimization gradient method for large dimensions. The new step sizes have faster convergence compared to the other methods, especially for cases with large dimensions.

Influence of Flexural Reinforcement on the Shear Strength of RC Beams without Stirrups

Numerical investigations were conducted to study the influence of flexural reinforcement ratio on the diagonal cracking strength and ultimate shear strength of reinforced concrete (RC) beams without stirrups. Three-dimensional nonlinear finite element analyses (FEAs) of the beams with flexural reinforcement ratios ranging from 0.58% to 2.20% subjected to a mid-span concentrated load were carried out. It is observed that the load-deflection and loadstrain curves obtained from the numerical analyses agree with those obtained from the experiments. It is concluded that flexural reinforcement ratio has a significant effect on the shear strength and deflection capacity of RC beams without stirrups. The predictions of diagonal cracking strength and ultimate shear strength of beams obtained by using the equations defined by a number of codes and researchers are compared with each other and with the experimental values.

Is HR in a State of Transition? An International Comparative Study on the Development of HR Competencies

Research Objectives: The roles and activities of Human Resource Management (HRM) have changed a lot in the past years. Driven by a changing environment and therefore new business requirements, the scope of human resource (HR) activities has widened. The extent to which these activities should focus on strategic issues to support the long term success of a company has been discussed in science for many years. As many economies of Central and Eastern Europe (CEE) experienced a phase of transition after the socialist era and are now recovering from the 2008 global crisis it is needed to examine the current state of HR positioning. Furthermore a trend in HR work developing from rather administrative units to being strategic partners of management can be noticed. This leads to the question of better understanding the underlying competencies which are necessary to support organisations. This topic was addressed by the international study “HR Competencies in international comparison”. The quantitative survey was conducted by the Institute for Human Resources & Organisation of FHWien University of Applied Science of WKW (A) in cooperation with partner universities in the countries Bosnia- Herzegovina, Croatia, Serbia and Slovenia. Methodology: Using the questionnaire developed by Dave Ulrich we tested whether the HR Competency model can be used for Austria, Bosnia and Herzegovina, Croatia, Serbia and Slovenia. After performing confirmatory and exploratory factor analysis for the whole data set containing all five countries we could clearly distinguish between four competencies. In a further step our analysis focused on median and average comparisons between the HR competency dimensions. Conclusion: Our literature review, in alignment with other studies, shows a relatively rapid pace of development of HR Roles and HR Competencies in BCSS in the past decades. Comparing data from BCSS and Austria we still can notice that regards strategic orientation there is a lack in BCSS countries, thus competencies are not as developed as in Austria. This leads us to the tentative conclusion that HR has undergone a rapid change but is still in a State of Transition from being a rather administrative unit to performing the role of a strategic partner.

A Simple Autonomous Hovering and Operating Control of Multicopter Using Only Web Camera

In this paper, an autonomous hovering control method of multicopter using only Web camera is proposed. Recently, various control method of an autonomous flight for multicopter are proposed. But, in the previous proposed methods, a motion capture system (i. e., OptiTrack) and laser range finder are often used to measure the position and posture of multicopter. To achieve an autonomous flight control of multicopter with simple equipments, we propose an autonomous flight control method using AR marker and Web camera. AR marker can measure the position of multicopter with Cartesian coordinate in three dimensional, then its position connects with aileron, elevator, and accelerator throttle operation. A simple PID control method is applied to the each operation and adjust the controller gains. Experimental results are given to show the effectiveness of our proposed method. Moreover, another simple operation method for autonomous flight control multicopter is also proposed.

Numerical Studies on Thrust Vectoring Using Shock-Induced Self Impinging Secondary Jets

Numerical studies have been carried out using a validated two-dimensional standard k-omega turbulence model for the design optimization of a thrust vector control system using shock induced self-impinging supersonic secondary double jet. Parametric analytical studies have been carried out at different secondary injection locations to identifying the highest unsymmetrical distribution of the main gas flow due to shock waves, which produces a desirable side force more lucratively for vectoring. The results from the parametric studies of the case on hand reveal that the shock induced self-impinging supersonic secondary double jet is more efficient in certain locations at the divergent region of a CD nozzle than a case with supersonic single jet with same mass flow rate. We observed that the best axial location of the self-impinging supersonic secondary double jet nozzle with a given jet interaction angle, built-in to a CD nozzle having area ratio 1.797, is 0.991 times the primary nozzle throat diameter from the throat location. We also observed that the flexible steering is possible after invoking ON/OFF facility to the secondary nozzles for meeting the onboard mission requirements. Through our case studies we concluded that the supersonic self-impinging secondary double jet at predesigned jet interaction angle and location can provide more flexible steering options facilitating with 8.81% higher thrust vectoring efficiency than the conventional supersonic single secondary jet without compromising the payload capability of any supersonic aerospace vehicle.

A Numerical Solution Based On Operational Matrix of Differentiation of Shifted Second Kind Chebyshev Wavelets for a Stefan Problem

In this study, one dimensional phase change problem (a Stefan problem) is considered and a numerical solution of this problem is discussed. First, we use similarity transformation to convert the governing equations into ordinary differential equations with its boundary conditions. The solutions of ordinary differential equation with the associated boundary conditions and interface condition (Stefan condition) are obtained by using a numerical approach based on operational matrix of differentiation of shifted second kind Chebyshev wavelets. The obtained results are compared with existing exact solution which is sufficiently accurate.

Study of Mixed Convection in a Vertical Channel Filled with a Reactive Porous Medium in the Absence of Local Thermal Equilibrium

This work consists of a numerical simulation of convective heat transfer in a vertical plane channel filled with a heat generating porous medium, in the absence of local thermal equilibrium. The walls are maintained to a constant temperature and the inlet velocity is uniform. The dynamic range is described by the Darcy-Brinkman model and the thermal field by two energy equations model. A dimensionless formulation is developed for performing a parametric study based on certain dimensionless groups such as, the Biot interstitial number, the thermal conductivity ratio and the volumetric heat generation, q '''. The governing equations are solved using the finite volume method, gave rise to a multitude of results concerning in particular the thermal field in the porous channel and the existence or not of the local thermal equilibrium.

The Study on Mechanical Properties of Graphene Using Molecular Mechanics

The elastic properties and fracture of two-dimensional graphene were calculated purely from the atomic bonding (stretching and bending) based on molecular mechanics method. Considering the representative unit cell of graphene under various loading conditions, the deformations of carbon bonds and the variations of the interlayer distance could be realized numerically under the geometry constraints and minimum energy assumption. In elastic region, it was found that graphene was in-plane isotropic. Meanwhile, the in-plane deformation of the representative unit cell is not uniform along armchair direction due to the discrete and non-uniform distributions of the atoms. The fracture of graphene could be predicted using fracture criteria based on the critical bond length, over which the bond would break. It was noticed that the fracture behavior were directional dependent, which was consistent with molecular dynamics simulation results.

Mind Your Product-Market Strategy on Selecting Marketing Inputs: An Uncertainty Approach in Indian Context

Market is an important factor for start-ups to look into during decision-making in product development and related areas. Emerging country markets are more uncertain in terms of information availability and institutional supports. The literature review of market uncertainty reveals the need for identifying factors representing the market uncertainty. This paper identifies factors for market uncertainty using Exploratory Factor Analysis (EFA) and confirmed the number of factor retention using an alternative factor retention criterion ‘Parallel Analysis’. 500 entrepreneurs, engaged in start-ups from all over India participated in the study. This paper concludes with the factor structure of ‘market uncertainty’ having dimensions of uncertainty in industry orientation, uncertainty in customer orientation and uncertainty in marketing orientation.

Static Analysis and Pseudostatic Slope Stability

This article aims to analyze the static stability and pseudostatic slope by using different methods such as: Bishop method, Junbu, Ordinary, Morgenstern-price and GLE. The two dimensional modeling of slope stability under various loading as: the earthquake effect, the water level and road mobile charges. The results show that the slope is stable in the static case without water, but in other cases, the slope lost its stability and give unstable. The calculation of safety factor is to evaluate the stability of the slope using the limit equilibrium method despite the difference between the results obtained by these methods that do not rely on the same assumptions. In the end, the results of this study illuminate well the influence of the action of water, moving loads and the earthquake on the stability of the slope.

3D Objects Indexing with a Direct and Analytical Method for Calculating the Spherical Harmonics Coefficients

In this paper, we propose a new method for threedimensional object indexing based on D.A.M.C-S.H.C descriptor (Direct and Analytical Method for Calculating the Spherical Harmonics Coefficients). For this end, we propose a direct calculation of the coefficients of spherical harmonics with perfect precision. The aims of the method are to minimize, the processing time on the 3D objects database and the searching time of similar objects to a request object. Firstly we start by defining the new descriptor using a new division of 3-D object in a sphere. Then we define a new distance which will be tested and prove his efficiency in the search for similar objects in the database in which we have objects with very various and important size.