Loss of P16/INK4A Protein Expression is a Common Abnormality in Hodgkin's Lymphoma

P16/INK4A is tumor suppressor protein that plays a critical role in cell cycle regulation. Loss of P16 protein expression has been implicated in pathogenesis of many cancers, including lymphoma. Therefore, we sought to investigate if loss of P16 protein expression is associated with lymphoma and/or any specific lymphoma subtypes (Hodgkin-s lymphoma (HL) and nonHodgkin-s lymphoma (NHL)). Fifty-five lymphoma cases consisted of 30 cases of HL and 25 cases of NHL, with an age range of 3 to 78 years, were examined for loss of P16 by immunohistochemical technique using a specific antibody reacting against P16. In total, P16 loss was seen in 33% of all lymphoma cases. P16 loss was identified in 47.7% of HL cases. In contrast, only 16% of NHL showed loss of P16. Loss of P16 was seen in 67% of HL patients with 50 years of age or older, whereas P16 loss was found in only 42% of HL patients with less than 50 years of age. P16 loss in HL is somewhat higher in male (55%) than in female (30%). In subtypes of HL, P16 loss was found exclusively in all cases of lymphocyte depletion, lymphocyte predominance and unclassified cases, whereas P16 loss was seen in 39% of mixed cellularity and 29% of nodular sclerosis cases. In low grade NHL patients, P16 loss was seen in approximately one-third of cases, whereas no or very rare of P16 loss was found in intermediate and high grade cases. P16 loss did not show any correlation with age or gender of NHL patients. In conclusion, the high rate of P16 loss seen in our study suggests that loss of P16 expression plays a critical role in the pathogenesis of lymphoma, particularly with HL.

Restartings: A Technique to Improve Classic Genetic Algorithms Performance

In this contribution, a way to enhance the performance of the classic Genetic Algorithm is proposed. The idea of restarting a Genetic Algorithm is applied in order to obtain better knowledge of the solution space of the problem. A new operator of 'insertion' is introduced so as to exploit (utilize) the information that has already been collected before the restarting procedure. Finally, numerical experiments comparing the performance of the classic Genetic Algorithm and the Genetic Algorithm with restartings, for some well known test functions, are given.

MRAS Based Speed Sensorless Control of Induction Motor Drives

The recent trend in field oriented control (FOC) is towards the use of sensorless techniques that avoid the use of speed sensor and flux sensor. Sensors are replaced by estimators or observers to minimise the cost and increase the reliability. In this paper an anlyse of perfomance of a MRAS used in sensorless control of induction motors and sensitvity to machine parameters change are studied.

A Shape Optimization Method in Viscous Flow Using Acoustic Velocity and Four-step Explicit Scheme

The purpose of this study is to derive optimal shapes of a body located in viscous flows by the finite element method using the acoustic velocity and the four-step explicit scheme. The formulation is based on an optimal control theory in which a performance function of the fluid force is introduced. The performance function should be minimized satisfying the state equation. This problem can be transformed into the minimization problem without constraint conditions by using the adjoint equation with adjoint variables corresponding to the state equation. The performance function is defined by the drag and lift forces acting on the body. The weighted gradient method is applied as a minimization technique, the Galerkin finite element method is used as a spatial discretization and the four-step explicit scheme is used as a temporal discretization to solve the state equation and the adjoint equation. As the interpolation, the orthogonal basis bubble function for velocity and the linear function for pressure are employed. In case that the orthogonal basis bubble function is used, the mass matrix can be diagonalized without any artificial centralization. The shape optimization is performed by the presented method.

Dynamics of Functional Composition of a Brazilian Tropical Forest in Response to Drought Stress

The aim of this study was to examine the dynamics of functional composition of a non flooded Amazonian forest in response to drought stress in terms of diameter growth, recruitment and mortality. The survey was carried out in the continuous forest of the Biological dynamics of forest fragments project 90 km outside the city of Manaus, state of Amazonas Brazil. All stems >10 cm dbh where identified to species level and monitored in 18 one hectare permanent sample plots from 1981 to 2004.For statistical analysis all species where aggregated in three ecological guilds. Two distinct drought events occurred in 1983 and 1997. Results showed that more early successional species performed better than later successional ones. Response was significant for both events but for the 1997 event this was more pronounced possibly because of the fact that the event was in the middle of the dry rather than the wet period as was the 1983 one.

Higher Frequency Modeling of Synchronous Exciter Machines by Equivalent Circuits and Transfer Functions

In this article the influence of higher frequency effects in addition to a special damper design on the electrical behavior of a synchronous generator main exciter machine is investigated. On the one hand these machines are often highly stressed by harmonics from the bridge rectifier thus facing additional eddy current losses. On the other hand the switching may cause the excitation of dangerous voltage peaks in resonant circuits formed by the diodes of the rectifier and the commutation reactance of the machine. Therefore modern rotating exciters are treated like synchronous generators usually modeled with a second order equivalent circuit. Hence the well known Standstill Frequency Response Test (SSFR) method is applied to a test machine in order to determine parameters for the simulation. With these results it is clearly shown that higher frequencies have a strong impact on the conventional equivalent circuit model. Because of increasing field displacement effects in the stranded armature winding the sub-transient reactance is even smaller than the armature leakage at high frequencies. As a matter of fact this prevents the algorithm to find an equivalent scheme. This issue is finally solved using Laplace transfer functions fully describing the transient behavior at the model ports.

Evolutionary Eigenspace Learning using CCIPCA and IPCA for Face Recognition

Traditional principal components analysis (PCA) techniques for face recognition are based on batch-mode training using a pre-available image set. Real world applications require that the training set be dynamic of evolving nature where within the framework of continuous learning, new training images are continuously added to the original set; this would trigger a costly continuous re-computation of the eigen space representation via repeating an entire batch-based training that includes the old and new images. Incremental PCA methods allow adding new images and updating the PCA representation. In this paper, two incremental PCA approaches, CCIPCA and IPCA, are examined and compared. Besides, different learning and testing strategies are proposed and applied to the two algorithms. The results suggest that batch PCA is inferior to both incremental approaches, and that all CCIPCAs are practically equivalent.

Treatment of Biowaste (Generated in Biodiesel Process) - A New Strategy for Green Environment and Horticulture Crop

Recent research on seeds of bio-diesel plants like Jatropha curcas, constituting 40-50% bio-crude oil indicates its potential as one of the most promising alternatives to conventional sources of energy. Also, limited studies on utilization of de-oiled cake have revealed that Jatropha bio-waste has good potential to be used as organic fertilizers produced via aerobic and anaerobic treatment. However, their commercial exploitation has not yet been possible. The present study aims at developing appropriate bio-processes and formulations utilizing Jatropha seed cake as organic fertilizer, for improving the growth of Polianthes tuberose L. (Tuberose). Pot experiments were carried out by growing tuberose plants on soil treated with composted formulations of Jatropha de-oiled cake, Farm Yard Manure (FYM) and inorganic fertilizers were also blended in soil. The treatment was carried out through soil amendment as well as foliar spray. The growth and morphological parameters were monitored for entire crop cycle. The growth Length and number of leaves, spike length, rachis length, number of bulb per plant and earliness of sprouting of bulb and yield enhancement were comparable to that achieved under inorganic fertilizer. Furthermore, performance of inorganic fertilizer also showed an improvement when blended with composted bio-waste. These findings would open new avenues for Jatropha based bio-wastes to be composted and used as organic fertilizers for commercial floriculture.

Material Defects Identification in Metal Ceramic Fixed Partial Dentures by En-Face Polarization Sensitive Optical Coherence Tomography

The fixed partial dentures are mainly used in the frontal part of the dental arch because of their great esthetics. There are several factors that are associated with the stress state created in ceramic restorations, including: thickness of ceramic layers, mechanical properties of the materials, elastic modulus of the supporting substrate material, direction, magnitude and frequency of applied load, size and location of occlusal contact areas, residual stresses induced by processing or pores, restoration-cement interfacial defects and environmental defects. The purpose of this study is to evaluate the capability of Polarization Sensitive Optical Coherence Tomography (PSOCT) in detection and analysis of possible material defects in metal-ceramic and integral ceramic fixed partial dentures. As a conclusion, it is important to have a non invasive method to investigate fixed partial prostheses before their insertion in the oral cavity in order to satisfy the high stress requirements and the esthetic function.

Using HMM-based Classifier Adapted to Background Noises with Improved Sounds Features for Audio Surveillance Application

Discrimination between different classes of environmental sounds is the goal of our work. The use of a sound recognition system can offer concrete potentialities for surveillance and security applications. The first paper contribution to this research field is represented by a thorough investigation of the applicability of state-of-the-art audio features in the domain of environmental sound recognition. Additionally, a set of novel features obtained by combining the basic parameters is introduced. The quality of the features investigated is evaluated by a HMM-based classifier to which a great interest was done. In fact, we propose to use a Multi-Style training system based on HMMs: one recognizer is trained on a database including different levels of background noises and is used as a universal recognizer for every environment. In order to enhance the system robustness by reducing the environmental variability, we explore different adaptation algorithms including Maximum Likelihood Linear Regression (MLLR), Maximum A Posteriori (MAP) and the MAP/MLLR algorithm that combines MAP and MLLR. Experimental evaluation shows that a rather good recognition rate can be reached, even under important noise degradation conditions when the system is fed by the convenient set of features.

Comparison between Minimum Direct and Indirect Jerks of Linear Dynamic Systems

Both the minimum energy consumption and smoothness, which is quantified as a function of jerk, are generally needed in many dynamic systems such as the automobile and the pick-and-place robot manipulator that handles fragile equipments. Nevertheless, many researchers come up with either solely concerning on the minimum energy consumption or minimum jerk trajectory. This research paper proposes a simple yet very interesting relationship between the minimum direct and indirect jerks approaches in designing the time-dependent system yielding an alternative optimal solution. Extremal solutions for the cost functions of direct and indirect jerks are found using the dynamic optimization methods together with the numerical approximation. This is to allow us to simulate and compare visually and statistically the time history of control inputs employed by minimum direct and indirect jerk designs. By considering minimum indirect jerk problem, the numerical solution becomes much easier and yields to the similar results as minimum direct jerk problem.

Implementation of an Innovative Simplified Sliding Mode Observer-Based Robust Fault Detection in a Drum Boiler System

One of the robust fault detection filter (RFDF) designing method is based on sliding-mode theory. The main purpose of our study is to introduce an innovative simplified reference residual model generator to formulate the RFDF as a sliding-mode observer without any manipulation package or transformation matrix, through which the generated residual signals can be evaluated. So the proposed design is more explicit and requires less design parameters in comparison with approaches requiring changing coordinates. To the best author's knowledge, this is the first time that the sliding mode technique is applied to detect actuator and sensor faults in a real boiler. The designing procedure is proposed in a drum boiler in Synvendska Kraft AB Plant in Malmo, Sweden as a multivariable and strongly coupled system. It is demonstrated that both sensor and actuator faults can robustly be detected. Also sensor faults can be diagnosed and isolated through this method.

A Fast Neural Algorithm for Serial Code Detection in a Stream of Sequential Data

In recent years, fast neural networks for object/face detection have been introduced based on cross correlation in the frequency domain between the input matrix and the hidden weights of neural networks. In our previous papers [3,4], fast neural networks for certain code detection was introduced. It was proved in [10] that for fast neural networks to give the same correct results as conventional neural networks, both the weights of neural networks and the input matrix must be symmetric. This condition made those fast neural networks slower than conventional neural networks. Another symmetric form for the input matrix was introduced in [1-9] to speed up the operation of these fast neural networks. Here, corrections for the cross correlation equations (given in [13,15,16]) to compensate for the symmetry condition are presented. After these corrections, it is proved mathematically that the number of computation steps required for fast neural networks is less than that needed by classical neural networks. Furthermore, there is no need for converting the input data into symmetric form. Moreover, such new idea is applied to increase the speed of neural networks in case of processing complex values. Simulation results after these corrections using MATLAB confirm the theoretical computations.

Study of Coupled Lateral-Torsional Free Vibrations of Laminated Composite Beam: Analytical Approach

In this paper, an analytical approach is used to study the coupled lateral-torsional vibrations of laminated composite beam. It is known that in such structures due to the fibers orientation in various layers, any lateral displacement will produce a twisting moment. This phenomenon is modeled by the bending-twisting material coupling rigidity and its main feature is the coupling of lateral and torsional vibrations. In addition to the material coupling, the effects of shear deformation and rotary inertia are taken into account in the definition of the potential and kinetic energies. Then, the governing differential equations are derived using the Hamilton-s principle and the mathematical model matches the Timoshenko beam model when neglecting the effect of bending-twisting rigidity. The equations of motion which form a system of three coupled PDEs are solved analytically to study the free vibrations of the beam in lateral and rotational modes due to the bending, as well as the torsional mode caused by twisting. The analytic solution is carried out in three steps: 1) assuming synchronous motion for the kinematic variables which are the lateral, rotational and torsional displacements, 2) solving the ensuing eigenvalue problem which contains three coupled second order ODEs and 3) imposing different boundary conditions related to combinations of simply, clamped and free end conditions. The resulting natural frequencies and mode shapes are compared with similar results in the literature and good agreement is achieved.

Thermodynamic Study of Hot Potassium Carbonate Solution Using Aspen Plus

This paper presents a study on the thermodynamics and transport properties of hot potassium carbonate aqueous system (HPC) using electrolyte non-random two liquid, (ELECNRTL) model. The operation conditions are varied to determine the system liquid phase stability range at the standard and critical conditions. A case study involving 30 wt% K2CO3, H2O standard system at pressure of 1 bar and temperature range from 280.15 to 366.15 K has been studied. The estimated solubility index, viscosity, water activity, and density which obtained from the simulation showed a good agreement with the experimental work. Furthermore, the saturation temperature of the solution has been estimated.

Field Investigation on Modification of Japanese Cedar Pollen Allergen in Urban Air-Polluted Area

Cry j 1 is a causative substance of Japanese cedar pollinosis, and it may deteriorate by Cry j 1 invasion to a lower respiratory tract. We observed airborne particles containing Cry j 1 by an immunofluorescence technique using a fluorescence microscope, and we clarified that Cry j 1 exist as aggregates of airborne fine particles (< 1.1 μm) in the urban atmosphere. Airborne Cry j 1 may react with air pollutants and be denature to a substance deteriorated Japanese cedar pollinosis. Therefore, we applied a sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to evaluate a Cry j 1 reacted with various air pollutants by liquid phase reaction, and calculated kinetics constants of Cry j 1 extracted from pollens collected in various sites and airborne fine particles containing Cry j 1 by using a surface plasmon resonance (SPR) method. As a result, it is suggested that Cry j 1 may be denatured by air pollutants during the transportation to the urban atmosphere.

Traveling Wave Solutions for the (3+1)-Dimensional Breaking Soliton Equation by (G'/G)- Expansion Method and Modified F-Expansion Method

In this paper, using (G/G )-expansion method and modified F-expansion method, we give some explicit formulas of exact traveling wave solutions for the (3+1)-dimensional breaking soliton equation. A modified F-expansion method is proposed by taking full advantages of F-expansion method and Riccati equation in seeking exact solutions of the equation.

DMC with Adaptive Weighted Output

This paper presents a new adaptive DMC controller that improves the controller performance in case of plant-model mismatch. The new controller monitors the plant measured output, compares it with the model output and calculates weights applied to the controller move. Simulations show that the new controller can help improve control performance and avoid instability in case of severe model mismatches.

Color View Synthesis for Animated Depth Security X-ray Imaging

We demonstrate the synthesis of intermediary views within a sequence of color encoded, materials discriminating, X-ray images that exhibit animated depth in a visual display. During the image acquisition process, the requirement for a linear X-ray detector array is replaced by synthetic image. Scale Invariant Feature Transform, SIFT, in combination with material segmented morphing is employed to produce synthetic imagery. A quantitative analysis of the feature matching performance of the SIFT is presented along with a comparative study of the synthetic imagery. We show that the total number of matches produced by SIFT reduces as the angular separation between the generating views increases. This effect is accompanied by an increase in the total number of synthetic pixel errors. The trends observed are obtained from 15 different luggage items. This programme of research is in collaboration with the UK Home Office and the US Dept. of Homeland Security.

Performance Evaluation of Hybrid Intelligent Controllers in Load Frequency Control of Multi Area Interconnected Power Systems

This paper deals with the application of artificial neural network (ANN) and fuzzy based Adaptive Neuro Fuzzy Inference System(ANFIS) approach to Load Frequency Control (LFC) of multi unequal area hydro-thermal interconnected power system. The proposed ANFIS controller combines the advantages of fuzzy controller as well as quick response and adaptability nature of ANN. Area-1 and area-2 consists of thermal reheat power plant whereas area-3 and area-4 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent controller like ANFIS, ANN and Fuzzy controllers and conventional PI and PID control approaches. To enhance the performance of intelligent and conventional controller sliding surface is included. The performances of the controllers are simulated using MATLAB/SIMULINK package. A comparison of ANFIS, ANN, Fuzzy, PI and PID based approaches shows the superiority of proposed ANFIS over ANN & fuzzy, PI and PID controller for 1% step load variation.