Behavior Model Mapping and Transformation using Model-Driven Architecture

Model mapping and transformation are important processes in high level system abstractions, and form the cornerstone of model-driven architecture (MDA) techniques. Considerable research in this field has devoted attention to static system abstraction, despite the fact that most systems are dynamic with high frequency changes in behavior. In this paper we provide an overview of work that has been done with regard to behavior model mapping and transformation, based on: (1) the completeness of the platform independent model (PIM); (2) semantics of behavioral models; (3) languages supporting behavior model transformation processes; and (4) an evaluation of model composition to effect the best approach to describing large systems with high complexity.

Artificial Intelligence Techniques applied to Biomedical Patterns

Pattern recognition is the research area of Artificial Intelligence that studies the operation and design of systems that recognize patterns in the data. Important application areas are image analysis, character recognition, fingerprint classification, speech analysis, DNA sequence identification, man and machine diagnostics, person identification and industrial inspection. The interest in improving the classification systems of data analysis is independent from the context of applications. In fact, in many studies it is often the case to have to recognize and to distinguish groups of various objects, which requires the need for valid instruments capable to perform this task. The objective of this article is to show several methodologies of Artificial Intelligence for data classification applied to biomedical patterns. In particular, this work deals with the realization of a Computer-Aided Detection system (CADe) that is able to assist the radiologist in identifying types of mammary tumor lesions. As an additional biomedical application of the classification systems, we present a study conducted on blood samples which shows how these methods may help to distinguish between carriers of Thalassemia (or Mediterranean Anaemia) and healthy subjects.

Quantification of Heart Rate Variability: A Measure based on Unique Heart Rates

It is established that the instantaneous heart rate (HR) of healthy humans keeps on changing. Analysis of heart rate variability (HRV) has become a popular non invasive tool for assessing the activities of autonomic nervous system. Depressed HRV has been found in several disorders, like diabetes mellitus (DM) and coronary artery disease, characterised by autonomic nervous dysfunction. A new technique, which searches for pattern repeatability in a time series, is proposed specifically for the analysis of heart rate data. These set of indices, which are termed as pattern repeatability measure and pattern repeatability ratio are compared with approximate entropy and sample entropy. In our analysis, based on the method developed, it is observed that heart rate variability is significantly different for DM patients, particularly for patients with diabetic foot ulcer.

A Short Form of the Taiwan Health Literacy Scale (THLS) for Chinese-Speaking Adults

The Taiwan Health Literacy Scale (THLS) was developed to cope with the need of measuring heath literacy of Chinese-speaking adults in Taiwan. Although the scale was proven having good reliability and validity, it was not popularly adopted by the practitioners due to the length, and the time required completing. Based on the THLS, this research further invited healthcare professionals to review the original scale for a possible shorten work. Under the logic of THLS, the research adopted an analytic hierarchy process technique to consolidate the healthcare experts- assessments to shorten the original scale. There are fifteen items out of the original 66 items were identified having higher loadings. Confirmed by the experts and passed a pilot test with 40 undergraduate students, a short form of THLS is then introduced. This research then used 839 samples from the major cities of the Hua-lien county in the eastern part of Taiwan to test the reliability and validity of this new scale. The reliability of the scale is high and acceptable. The current scale is also highly correlated with the original, of which provide evidence for the validity of the scale.

Design and Implementation of Optimal Winner Determination Algorithm in Combinatorial e- Auctions

The one of best robust search technique on large scale search area is heuristic and meta heuristic approaches. Especially in issue that the exploitation of combinatorial status in the large scale search area prevents the solution of the problem via classical calculating methods, so such problems is NP-complete. in this research, the problem of winner determination in combinatorial auctions have been formulated and by assessing older heuristic functions, we solve the problem by using of genetic algorithm and would show that this new method would result in better performance in comparison to other heuristic function such as simulated annealing greedy approach.

Mass Transfer of Palm Kernel Oil under Supercritical Conditions

The purpose of the study was to determine the amount of Palm Kernel Oil (PKO) extracted from a packed bed of palm kernels in a supercritical fluid extractor using supercritical carbon dioxide (SC-CO2) as an environmental friendly solvent. Further, the study sought to ascertain the values of the overall mass transfer coefficient (K) of PKO evaluation through a mass transfer model, at constant temperature of 50 °C, 60 °C, and 70 °C and pressures range from 27.6 MPa, 34.5 MPa, 41.4 MPa and 48.3 MPa respectively. Finally, the study also seeks to demonstrate the application of the overall mass transfer coefficient values in relation to temperature and pressure. The overall mass transfer coefficient was found to be dependent pressure at each constant temperature of 50 °C, 60 °C and 70 °C. The overall mass transfer coefficient for PKO in a packed bed of palm kernels was found to be in the range of 1.21X 10-4 m min-1 to 1.72 X 10-4 m min-1 for a constant temperature of 50 °C and in the range of 2.02 X 10-4 m min-1 to 2.43 X 10-4 m min-1 for a constant temperature of 60 °C. Similar increasing trend of the overall mass transfer coefficient from 1.77 X 10-4 m min-1 to 3.64 X 10-4 m min-1 was also observed at constant temperature of 70 °C within the same pressure range from 27.6 MPa to 48.3 MPa.

MHD Falkner-Skan Boundary Layer Flow with Internal Heat Generation or Absorption

This paper examines the forced convection flow of incompressible, electrically conducting viscous fluid past a sharp wedge in the presence of heat generation or absorption with an applied magnetic field. The system of partial differential equations governing Falkner - Skan wedge flow and heat transfer is first transformed into a system of ordinary differential equations using similarity transformations which is later solved using an implicit finite - difference scheme, along with quasilinearization technique. Numerical computations are performed for air (Pr = 0.7) and displayed graphically to illustrate the influence of pertinent physical parameters on local skin friction and heat transfer coefficients and, also on, velocity and temperature fields. It is observed that the magnetic field increases both the coefficients of skin friction and heat transfer. The effect of heat generation or absorption is found to be very significant on heat transfer, but its effect on the skin friction is negligible. Indeed, the occurrence of overshoot is noticed in the temperature profiles during heat generation process, causing the reversal in the direction of heat transfer.

Incidence of Chronic Disease and Lipid Profile in Veteran Rugby Athletes

Recently, the health of retired National Football League players, particularly lineman has been investigated. A number of studies have reported increased cardiometabolic risk, premature cardiovascular disease and incidence of type 2 diabetes. Rugby union players have somatotypes very similar to National Football League players which suggests that rugby players may have similar health risks. The International Golden Oldies World Rugby Festival (GORF) provided a unique opportunity to investigate the demographics of veteran rugby players. METHODOLOGIES: A cross-sectional, observational study was completed using an online web-based questionnaire that consisted of medical history and physiological measures. Data analysis was completed using a one sample t-test (50yrs) and Chi-square test. RESULTS: A total of 216 veteran rugby competitors (response rate = 6.8%) representing 10 countries, aged 35-72 yrs (mean 51.2, S.D. ±8.0), participated in the online survey. As a group, the incidence of current smokers was low at 8.8% (avg 72.4 cigs/wk) whilst the percentage consuming alcohol was high (93.1% (avg 11.2 drinks/wk). Competitors reported the following top six chronic diseases/disorders; hypertension (18.6%), arthritis (OA/RA, 11.5%), asthma (9.3%), hyperlipidemia (8.2%), diabetes (all types, 7.5%) and gout (6%), there were significant differences between groups with regard to cancer (all types) and migraines. When compared to the Australian general population (Australian Bureau of Statistics data, n=18,000), GORF competitors had a significantly lower incidence of anxiety (p

Experimental Investigation of the Transient Cooling Characteristics of an Industrial Glass Tempering Unit

Energy consumption rate during the cooling process of industrial glass tempering process is considerably high. In this experimental study the effect of dimensionless jet to jet distance (S/D) and jet to plate distance (H/D) on the cooling time have been investigated. In the experiments 4 mm thick glass samples have been used. Cooling unit consists of 16 mutually placed seamless aluminum nozzles of 8 mm in diameter and 80 mm in length. Nozzles were in staggered arrangement. Experiments were conducted with circular jets for H/D values between 1 and 10, and for S/D values between 2 and 10. During the experiments Reynolds number has been kept constant at 30000. Experimental results showed that the longest cooling time with 87 seconds has been observed in the experiments for S/D=10 and H/D=10 values, while the shortest cooling time with 42.5 seconds has been measured in the experiments for S/D=2 and H/D=4 values.

Mutational Effect to Particular Interaction Energy of Cycloguanil Drug to Plasmodium Plasmodium Falciparum Dihydrofolate Reductase Enzymes

In order to find the particular interaction energy between cylcloguanil and the amino acids surrounding the pocket of wild type and quadruple mutant type PfDHFR enzymes, the MP2 method with basis set 6-31G(d,p) level of calculations was performed. The obtained interaction energies found that Asp54 has the strongest interaction energy to both wild type and mutant type of - 12.439 and -11.250 kcal/mol, respectively and three amino acids; Asp54, Ile164 and Ile14 formed the H-bonding with cycloguanil drug. Importantly, the mutation at Ser108Asn was the key important of cycloguanil resistant with showing repulsive interaction energy.

IFS on the Multi-Fuzzy Fractal Space

The IFS is a scheme for describing and manipulating complex fractal attractors using simple mathematical models. More precisely, the most popular “fractal –based" algorithms for both representation and compression of computer images have involved some implementation of the method of Iterated Function Systems (IFS) on complete metric spaces. In this paper a new generalized space called Multi-Fuzzy Fractal Space was constructed. On these spases a distance function is defined, and its completeness is proved. The completeness property of this space ensures the existence of a fixed-point theorem for the family of continuous mappings. This theorem is the fundamental result on which the IFS methods are based and the fractals are built. The defined mappings are proved to satisfy some generalizations of the contraction condition.

From Maskee to Audible Noise in Perceptual Speech Enhancement

A new analysis of perceptual speech enhancement is presented. It focuses on the fact that if only noise above the masking threshold is filtered, then noise below the masking threshold, but above the absolute threshold of hearing, can become audible after the masker filtering. This particular drawback of some perceptual filters, hereafter called the maskee-to-audible-noise (MAN) phenomenon, favours the emergence of isolated tonals that increase musical noise. Two filtering techniques that avoid or correct the MAN phenomenon are proposed to effectively suppress background noise without introducing much distortion. Experimental results, including objective and subjective measurements, show that these techniques improve the enhanced speech quality and the gain they bring emphasizes the importance of the MAN phenomenon.

Chose the Right Mutation Rate for Better Evolve Combinational Logic Circuits

Evolvable hardware (EHW) is a developing field that applies evolutionary algorithm (EA) to automatically design circuits, antennas, robot controllers etc. A lot of research has been done in this area and several different EAs have been introduced to tackle numerous problems, as scalability, evolvability etc. However every time a specific EA is chosen for solving a particular task, all its components, such as population size, initialization, selection mechanism, mutation rate, and genetic operators, should be selected in order to achieve the best results. In the last three decade the selection of the right parameters for the EA-s components for solving different “test-problems" has been investigated. In this paper the behaviour of mutation rate for designing logic circuits, which has not been done before, has been deeply analyzed. The mutation rate for an EHW system modifies the number of inputs of each logic gates, the functionality (for example from AND to NOR) and the connectivity between logic gates. The behaviour of the mutation has been analyzed based on the number of generations, genotype redundancy and number of logic gates for the evolved circuits. The experimental results found provide the behaviour of the mutation rate during evolution for the design and optimization of simple logic circuits. The experimental results propose the best mutation rate to be used for designing combinational logic circuits. The research presented is particular important for those who would like to implement a dynamic mutation rate inside the evolutionary algorithm for evolving digital circuits. The researches on the mutation rate during the last 40 years are also summarized.

An Alternative Method for Generating Almost Infinite Sequence of Gaussian Variables

Most of the well known methods for generating Gaussian variables require at least one standard uniform distributed value, for each Gaussian variable generated. The length of the random number generator therefore, limits the number of independent Gaussian distributed variables that can be generated meanwhile the statistical solution of complex systems requires a large number of random numbers for their statistical analysis. We propose an alternative simple method of generating almost infinite number of Gaussian distributed variables using a limited number of standard uniform distributed random numbers.

A Study on Early Prediction of Fault Proneness in Software Modules using Genetic Algorithm

Fault-proneness of a software module is the probability that the module contains faults. To predict faultproneness of modules different techniques have been proposed which includes statistical methods, machine learning techniques, neural network techniques and clustering techniques. The aim of proposed study is to explore whether metrics available in the early lifecycle (i.e. requirement metrics), metrics available in the late lifecycle (i.e. code metrics) and metrics available in the early lifecycle (i.e. requirement metrics) combined with metrics available in the late lifecycle (i.e. code metrics) can be used to identify fault prone modules using Genetic Algorithm technique. This approach has been tested with real time defect C Programming language datasets of NASA software projects. The results show that the fusion of requirement and code metric is the best prediction model for detecting the faults as compared with commonly used code based model.

Issues and Architecture for Supporting Data Warehouse Queries in Web Portals

Data Warehousing tools have become very popular and currently many of them have moved to Web-based user interfaces to make it easier to access and use the tools. The next step is to enable these tools to be used within a portal framework. The portal framework consists of pages having several small windows that contain individual data warehouse query results. There are several issues that need to be considered when designing the architecture for a portal enabled data warehouse query tool. Some issues need special techniques that can overcome the limitations that are imposed by the nature of data warehouse queries. Issues such as single sign-on, query result caching and sharing, customization, scheduling and authorization need to be considered. This paper discusses such issues and suggests an architecture to support data warehouse queries within Web portal frameworks.

Experimental Study on the Hysteresis Properties in Operation of Vertical Axis Wind Turbines

Hysteresis phenomenon has been observed in the operations of both horizontal-axis and vertical-axis wind turbines (HAWTs and VAWTs). In this study, wind tunnel experiments were applied to investigate the characters of hysteresis phenomena between the angular speed and the external resistance of electrical loading during the operation of a Darrieus type VAWT. Data of output voltage, output current, angular speed of wind turbine under different wind speeds are measured and analyzed. Results show that the range of external resistance changes with the wind speed. The range decreases as the wind speed increases following an exponential decay form. Experiments also indicate that the maximum output power of wind turbines is always inside the range where hysteresis happened. These results provide an important reference to the design of output control system of wind turbines.

The Best Efficiency Point of the Performance of Solar Cell Panel System for Pumping Water at Various Lifting Heads Using 100 W Motor- Pump Unit

This study was carried out experimentally and analytically about the performance of solar cell panel system for operating the pump coupled by dc-motor. The solar cell panel with total area 1.9848 m2 consists of three modules of 80 Wp each. The small centrifugal pump powered by dc-motor is operated to lift water from 1m to 7m heads in sequence and gives the amount of water pumped over the whole day from 08.00 to 16.00 h are 11988, 10851, 8874, 7695, 5760, 3600, 2340 L/d respectively. The hourly global solar radiation during the day is an average of 506 W/m2. This study also presents the I-V characteristics of the panel at global radiations 200, 400, 600, 800 and 1000 W/m2 matched with the operation of the pump at the above lifting heads. It proves that the only solar radiations 800 and 1000 W/m2 could provide lifting head from 1m to 7m. The analysis shows the best efficiency point of the performance of solar cell panel system occurs at the pumping head 2.89 m.

Fuzzy Group Decision Making for the Assessment of Health-Care Waste Disposal Alternatives in Istanbul

Disposal of health-care waste (HCW) is considered as an important environmental problem especially in large cities. Multiple criteria decision making (MCDM) techniques are apt to deal with quantitative and qualitative considerations of the health-care waste management (HCWM) problems. This research proposes a fuzzy multi-criteria group decision making approach with a multilevel hierarchical structure including qualitative as well as quantitative performance attributes for evaluating HCW disposal alternatives for Istanbul. Using the entropy weighting method, objective weights as well as subjective weights are taken into account to determine the importance weighting of quantitative performance attributes. The results obtained using the proposed methodology are thoroughly analyzed.

Interval Type-2 Fuzzy Vibration Control of an ERF Embedded Smart Structure

The main objective of this article is to present the semi-active vibration control using an electro-rheological fluid embedded sandwich structure for a cantilever beam. ER fluid is a smart material, which cause the suspended particles polarize and connect each other to form chain. The stiffness and damping coefficients of the ER fluid can be changed in 10 micro seconds; therefore, ERF is suitable to become the material embedded in the tunable vibration absorber to become a smart absorber. For the ERF smart material embedded structure, the fuzzy control law depends on the experimental expert database and the proposed self-tuning strategy. The electric field is controlled by a CRIO embedded system to implement the real application. This study investigates the different performances using the Type-1 fuzzy and interval Type-2 fuzzy controllers. The Interval type-2 fuzzy control is used to improve the modeling uncertainties for this ERF embedded shock absorber. The self-tuning vibration controllers using Type-1 and Interval Type-2 fuzzy law are implemented to the shock absorber system. Based on the resulting performance, Internal Type-2 fuzzy is better than the traditional Type-1 fuzzy control for this vibration control system.