Optimal Path Planning under Priori Information in Stochastic, Time-varying Networks

A novel path planning approach is presented to solve optimal path in stochastic, time-varying networks under priori traffic information. Most existing studies make use of dynamic programming to find optimal path. However, those methods are proved to be unable to obtain global optimal value, moreover, how to design efficient algorithms is also another challenge. This paper employs a decision theoretic framework for defining optimal path: for a given source S and destination D in urban transit network, we seek an S - D path of lowest expected travel time where its link travel times are discrete random variables. To solve deficiency caused by the methods of dynamic programming, such as curse of dimensionality and violation of optimal principle, an integer programming model is built to realize assignment of discrete travel time variables to arcs. Simultaneously, pruning techniques are also applied to reduce computation complexity in the algorithm. The final experiments show the feasibility of the novel approach.

Towards Model-Driven Communications

In modern distributed software systems, the issue of communication among composing parts represents a critical point, but the idea of extending conventional programming languages with general purpose communication constructs seems difficult to realize. As a consequence, there is a (growing) gap between the abstraction level required by distributed applications and the concepts provided by platforms that enable communication. This work intends to discuss how the Model Driven Software Development approach can be considered as a mature technology to generate in automatic way the schematic part of applications related to communication, by providing at the same time high level specialized languages useful in all the phases of software production. To achieve the goal, a stack of languages (meta-meta¬models) has been introduced in order to describe – at different levels of abstraction – the collaborative behavior of generic entities in terms of communication actions related to a taxonomy of messages. Finally, the generation of platforms for communication is viewed as a form of specification of language semantics, that provides executable models of applications together with model-checking supports and effective runtime environments.

Fuzzy Neuro Approach to Busbar Protection; Design and Implementation

This paper presents a new approach for busbar protection with stable operation of current transformer during saturation, using fuzzy neuro and symmetrical components theory. This technique uses symmetrical components of current signals to learn the hidden relationship existing in the input patterns. Simulation studies are preformed and the influence of changing system parameters such as inception fault and source impedance is studied. Details of the design procedure and the results of performance studies with the proposed relay are given in the paper. An analysis of the performance of the proposed technique during ct saturation conditions is presented. The performance of the technique was investigated for a variety of operating conditions and for several busbar configurations. Data generated by EMTDC simulations of model power systems were used in the investigations. The results indicate that the proposed technique is stable during ct saturation conditions.

Human Motion Regeneration in 2-Dimension as Stick Figure Animation with Accelerometers

This paper explores the opportunity of using tri-axial wireless accelerometers for supervised monitoring of sports movements. A motion analysis system for the upper extremities of lawn bowlers in particular is developed. Accelerometers are placed on parts of human body such as the chest to represent the shoulder movements, the back to capture the trunk motion, back of the hand, the wrist and one above the elbow, to capture arm movements. These sensors placement are carefully designed in order to avoid restricting bowler-s movements. Data is acquired from these sensors in soft-real time using virtual instrumentation; the acquired data is then conditioned and converted into required parameters for motion regeneration. A user interface was also created to facilitate in the acquisition of data, and broadcasting of commands to the wireless accelerometers. All motion regeneration in this paper deals with the motion of the human body segment in the X and Y direction, looking into the motion of the anterior/ posterior and lateral directions respectively.

A High-Frequency Low-Power Low-Pass-Filter-Based All-Current-Mirror Sinusoidal Quadrature Oscillator

A high-frequency low-power sinusoidal quadrature oscillator is presented through the use of two 2nd-order low-pass current-mirror (CM)-based filters, a 1st-order CM low-pass filter and a CM bilinear transfer function. The technique is relatively simple based on (i) inherent time constants of current mirrors, i.e. the internal capacitances and the transconductance of a diode-connected NMOS, (ii) a simple negative resistance RN formed by a resistor load RL of a current mirror. Neither external capacitances nor inductances are required. As a particular example, a 1.9-GHz, 0.45-mW, 2-V CMOS low-pass-filter-based all-current-mirror sinusoidal quadrature oscillator is demonstrated. The oscillation frequency (f0) is 1.9 GHz and is current-tunable over a range of 370 MHz or 21.6 %. The power consumption is at approximately 0.45 mW. The amplitude matching and the quadrature phase matching are better than 0.05 dB and 0.15°, respectively. Total harmonic distortions (THD) are less than 0.3 %. At 2 MHz offset from the 1.9 GHz, the carrier to noise ratio (CNR) is 90.01 dBc/Hz whilst the figure of merit called a normalized carrier-to-noise ratio (CNRnorm) is 153.03 dBc/Hz. The ratio of the oscillation frequency (f0) to the unity-gain frequency (fT) of a transistor is 0.25. Comparisons to other approaches are also included.

Parameter Estimation using Maximum Likelihood Method from Flight Data at High Angles of Attack

The paper presents the modeling of nonlinear longitudinal aerodynamics using flight data of Hansa-3 aircraft at high angles of attack near stall. The Kirchhoff-s quasi-steady stall model has been used to incorporate nonlinear aerodynamic effects in the aerodynamic model used to estimate the parameters, thereby, making the aerodynamic model nonlinear. The Maximum Likelihood method has been applied to the flight data (at high angles of attack) for the estimation of parameters (aerodynamic and stall characteristics) using the nonlinear aerodynamic model. To improve the accuracy level of the estimates, an approach of fixing the strong parameters has also been presented.

Lean Changeability – Evaluation and Design of Lean and Transformable Factories

In today-s turbulent environment, companies are faced with two principal challenges. On the one hand, it is necessary to produce ever more cost-effectively to remain competitive. On the other hand, factories need to be transformable in order to manage unpredictable changes in the corporate environment. To deal with these different challenges, companies use the philosophy of lean production in the first case, in the second case the philosophy of transformability. To a certain extent these two approaches follow different directions. This can cause conflicts when designing factories. Therefore, the Institute of Production Systems and Logistics (IFA) of the Leibniz University of Hanover has developed a procedure to allow companies to evaluate and design their factories with respect to the requirements of both philosophies.

Using Case-Based Reasoning to New Service Development from User Innovation Community in Mobile Application Services

The emergence of mobile application services and App Store has led to the explosive growth of user innovation, which users voluntarily contribute to. User innovation communities where end users freely reveal innovative ideas and needs with other community members are becoming increasingly influential in this area. However, user-s ideas in user innovation community are not enough to be new service opportunity, because some of them can already developed as existing services in App Store. Moreover, the existing services similar to new service opportunity can be significant references to apply analogy to develop service concept. In response, this research proposes Case-Based Reasoning approach to matching the user needs and existing services, identifying unmet opportunistic user needs, and retrieving similar services with opportunity. Due to its intuitive and transparent algorithm, users related to App Store innovation communities can easily employ Case-Based Reasoning based approach to their innovation.

A Study on Algorithm Fusion for Recognition and Tracking of Moving Robot

This paper presents an algorithm for the recognition and tracking of moving objects, 1/10 scale model car is used to verify performance of the algorithm. Presented algorithm for the recognition and tracking of moving objects in the paper is as follows. SURF algorithm is merged with Lucas-Kanade algorithm. SURF algorithm has strong performance on contrast, size, rotation changes and it recognizes objects but it is slow due to many computational complexities. Processing speed of Lucas-Kanade algorithm is fast but the recognition of objects is impossible. Its optical flow compares the previous and current frames so that can track the movement of a pixel. The fusion algorithm is created in order to solve problems which occurred using the Kalman Filter to estimate the position and the accumulated error compensation algorithm was implemented. Kalman filter is used to create presented algorithm to complement problems that is occurred when fusion two algorithms. Kalman filter is used to estimate next location, compensate for the accumulated error. The resolution of the camera (Vision Sensor) is fixed to be 640x480. To verify the performance of the fusion algorithm, test is compared to SURF algorithm under three situations, driving straight, curve, and recognizing cars behind the obstacles. Situation similar to the actual is possible using a model vehicle. Proposed fusion algorithm showed superior performance and accuracy than the existing object recognition and tracking algorithms. We will improve the performance of the algorithm, so that you can experiment with the images of the actual road environment.

Information Entropy of Isospectral Hydrogen Atom

The position and momentum space information entropies of hydrogen atom are exactly evaluated. Using isospectral Hamiltonian approach, a family of isospectral potentials is constructed having same energy eigenvalues as that of the original potential. The information entropy content is obtained in position space as well as in momentum space. It is shown that the information entropy content in each level can be re-arranged as a function of deformation parameter.

Intellectual Capital Report for Universities

Intellectual capital reporting becomes critical at universities, mainly due to the fact that knowledge is the main output as well as input in these institutions. In addition, universities have continuous external demands for greater information and transparency about the use of public funds, and are increasingly provided with greater autonomy regarding their organization, management, and budget allocation. This situation requires new management and reporting systems. The purpose of the present study is to provide a model for intellectual capital report in Spanish universities. To this end, a questionnaire was sent to every member of the Social Councils of Spanish public universities in order to identify which intangible elements university stakeholders demand most. Our proposal for an intellectual capital report aims to act as a guide to help the Spanish universities on the road to the presentation of information on intellectual capital which can assist stakeholders to make the right decisions.

Quantitative Evaluation of Frameworks for Web Applications

An empirical study of web applications that use software frameworks is presented here. The analysis is based on two approaches. In the first, developers using such frameworks are required, based on their experience, to assign weights to parameters such as database connection. In the second approach, a performance testing tool, OpenSTA, is used to compute start time and other such measures. From such an analysis, it is concluded that open source software is superior to proprietary software. The motivation behind this research is to examine ways in which a quantitative assessment can be made of software in general and frameworks in particular. Concepts such as metrics and architectural styles are discussed along with previously published research.

A Neural-Network-Based Fault Diagnosis Approach for Analog Circuits by Using Wavelet Transformation and Fractal Dimension as a Preprocessor

This paper presents a new method of analog fault diagnosis based on back-propagation neural networks (BPNNs) using wavelet decomposition and fractal dimension as preprocessors. The proposed method has the capability to detect and identify faulty components in an analog electronic circuit with tolerance by analyzing its impulse response. Using wavelet decomposition to preprocess the impulse response drastically de-noises the inputs to the neural network. The second preprocessing by fractal dimension can extract unique features, which are the fed to a neural network as inputs for further classification. A comparison of our work with [1] and [6], which also employs back-propagation (BP) neural networks, reveals that our system requires a much smaller network and performs significantly better in fault diagnosis of analog circuits due to our proposed preprocessing techniques.

Weed Classification using Histogram Maxima with Threshold for Selective Herbicide Applications

Information on weed distribution within the field is necessary to implement spatially variable herbicide application. Since hand labor is costly, an automated weed control system could be feasible. This paper deals with the development of an algorithm for real time specific weed recognition system based on Histogram Maxima with threshold of an image that is used for the weed classification. This algorithm is specifically developed to classify images into broad and narrow class for real-time selective herbicide application. The developed system has been tested on weeds in the lab, which have shown that the system to be very effectiveness in weed identification. Further the results show a very reliable performance on images of weeds taken under varying field conditions. The analysis of the results shows over 95 percent classification accuracy over 140 sample images (broad and narrow) with 70 samples from each category of weeds.

Hiding Data in Images Using PCP

In recent years, everything is trending toward digitalization and with the rapid development of the Internet technologies, digital media needs to be transmitted conveniently over the network. Attacks, misuse or unauthorized access of information is of great concern today which makes the protection of documents through digital media a priority problem. This urges us to devise new data hiding techniques to protect and secure the data of vital significance. In this respect, steganography often comes to the fore as a tool for hiding information. Steganography is a process that involves hiding a message in an appropriate carrier like image or audio. It is of Greek origin and means "covered or hidden writing". The goal of steganography is covert communication. Here the carrier can be sent to a receiver without any one except the authenticated receiver only knows existence of the information. Considerable amount of work has been carried out by different researchers on steganography. In this work the authors propose a novel Steganographic method for hiding information within the spatial domain of the gray scale image. The proposed approach works by selecting the embedding pixels using some mathematical function and then finds the 8 neighborhood of the each selected pixel and map each bit of the secret message in each of the neighbor pixel coordinate position in a specified manner. Before embedding a checking has been done to find out whether the selected pixel or its neighbor lies at the boundary of the image or not. This solution is independent of the nature of the data to be hidden and produces a stego image with minimum degradation.

A Field Research for Investigating the Effect of Strategic Management on Institutionalization Levels of Enterprises

The aim of this study is to determine the effect of strategic management implementations on the institutionalization levels. In this regard a field study has been made over 31 stone quarry enterprises in cement producing sector in Konya by using survey method. In this study, institutionalization levels of the enterprises have been evaluated regarding three dimensions: professionalization, management approach, participation in decisions and delegation of authority. According to the results of the survey, there is a highly positive and statistically significant relationship between the strategic management implementations and institutionalization levels of the enterprises. Additionally,-considering the results of regression analysis made for establishing the relationship between strategic management and institutionalization levels- it has been determined that strategic management implementations of the enterprises can be used as a variable to explain the institutionalization levels of them, and also strategic management implementations of the enterprises increase the institutionalization levels of them.

A Novel Convergence Accelerator for the LMS Adaptive Algorithm

The least mean square (LMS) algorithmis one of the most well-known algorithms for mobile communication systems due to its implementation simplicity. However, the main limitation is its relatively slow convergence rate. In this paper, a booster using the concept of Markov chains is proposed to speed up the convergence rate of LMS algorithms. The nature of Markov chains makes it possible to exploit the past information in the updating process. Moreover, since the transition matrix has a smaller variance than that of the weight itself by the central limit theorem, the weight transition matrix converges faster than the weight itself. Accordingly, the proposed Markov-chain based booster thus has the ability to track variations in signal characteristics, and meanwhile, it can accelerate the rate of convergence for LMS algorithms. Simulation results show that the LMS algorithm can effectively increase the convergence rate and meantime further approach the Wiener solution, if the Markov-chain based booster is applied. The mean square error is also remarkably reduced, while the convergence rate is improved.

DEA Method for Evaluation of EU Performance

The paper deals with an application of quantitative analysis – the Data Envelopment Analysis (DEA) method to performance evaluation of the European Union Member States, in the reference years 2000 and 2011. The main aim of the paper is to measure efficiency changes over the reference years and to analyze a level of productivity in individual countries based on DEA method and to classify the EU Member States to homogeneous units (clusters) according to efficiency results. The theoretical part is devoted to the fundamental basis of performance theory and the methodology of DEA. The empirical part is aimed at measuring degree of productivity and level of efficiency changes of evaluated countries by basic DEA model – CCR CRS model, and specialized DEA approach – the Malmquist Index measuring the change of technical efficiency and the movement of production possibility frontier. Here, DEA method becomes a suitable tool for setting a competitive/uncompetitive position of each country because there is not only one factor evaluated, but a set of different factors that determine the degree of economic development.

A State Aggregation Approach to Singularly Perturbed Markov Reward Processes

In this paper, we propose a single sample path based algorithm with state aggregation to optimize the average rewards of singularly perturbed Markov reward processes (SPMRPs) with a large scale state spaces. It is assumed that such a reward process depend on a set of parameters. Differing from the other kinds of Markov chain, SPMRPs have their own hierarchical structure. Based on this special structure, our algorithm can alleviate the load in the optimization for performance. Moreover, our method can be applied on line because of its evolution with the sample path simulated. Compared with the original algorithm applied on these problems of general MRPs, a new gradient formula for average reward performance metric in SPMRPs is brought in, which will be proved in Appendix, and then based on these gradients, the schedule of the iteration algorithm is presented, which is based on a single sample path, and eventually a special case in which parameters only dominate the disturbance matrices will be analyzed, and a precise comparison with be displayed between our algorithm with the old ones which is aim to solve these problems in general Markov reward processes. When applied in SPMRPs, our method will approach a fast pace in these cases. Furthermore, to illustrate the practical value of SPMRPs, a simple example in multiple programming in computer systems will be listed and simulated. Corresponding to some practical model, physical meanings of SPMRPs in networks of queues will be clarified.

Manual Testing of Web Software Systems Supported by Direct Guidance of the Tester Based On Design Model

Software testing is important stage of software development cycle. Current testing process involves tester and electronic documents with test case scenarios. In this paper we focus on new approach to testing process using automated test case generation and tester guidance through the system based on the model of the system. Test case generation and model-based testing is not possible without proper system model. We aim on providing better feedback from the testing process thus eliminating the unnecessary paper work.