Structural and Computational Studies of N-[(2,6-Diethylphenyl) carbamothioyl]-2,2-diphenylacetamide, N-[(3 Ethylphenyl) carbamothioyl]-2,2-diphenylacetamide and 2,2-Diphenyl-N-{[2-(trifluoromethyl) phenyl]carbamothioyl}acetamide

Theoretical investigations are performed by DFT method of B3LYP/6-31G+(2d,p) and B3LYP/6-311G+(2d,p) basis sets for three carbonyl thiourea compounds, namely N-[(2,6-Diethylphenyl)carbamothioyl]-2,2-diphenylacetamide (Compound I), N-[(3-Ethylphenyl)carbamothioyl]-2,2-diphenylacetamide (Compound II) and 2,2-Diphenyl-N-{[2-(trifluoromethyl)phenyl]carbamothioyl}acetamide (Compound III). Theoretical calculations for bond parameters, harmonic vibration frequencies and isotropic chemical shifts are in good agreement with the experimental results. The calculated molecular vibrations show good correlation values, which are 0.998 and 0.999 with the experimental data. The energy gap for compounds I, II and III calculated at B3LYP/6-31G+(2d,p) basis set are 4.455866117, 4.297495791 and 4.313550514 eV respectively, while for B3LYP/6-311G+(2d,p) basis set the energy gap obtained are 4.453689205 (Compound I), 4.311373603 (Compound II) and 4.315727426 (Compound III) eV.

Capacity Flexibility within Production

Due to high dynamics in current markets the expectations regarding logistics increase steadily. However, the complexity and variety of products and production make it difficult to understand the interdependencies between logistical objectives and their determining factors. Therefore specific models are needed to meet this challenge. The Logistic Operating Curves Theory is such a model. With its aid the basic correlations between the logistic objectives can be described. Within this model the capacity flexibility represents an important parameter. However, a proper mathematical description for this parameter is still missing. Within this paper such a description will be developed in order to make the Logistic Operating Curves Theory more accurate.

Anthropometric Correlates of Balance Performance in Non-Institutionalized Elderly

Purpose: The fear of falling is a major concern among the elderly. Sixty-five percent of individuals older than 60 years of age experience loss of balance often on a daily basis. Therefore, balance assessment in the elderly deserves special attention due to its importance in functional mobility and safety. This study aimed at assessing balance performance and comparing some anthropometric parameters among a Nigerian non-institutionalized elderly population. Methods: Sixty one elderly subjects (31 males and 30 females) participated in this study. Their ages ranged between 62 and 84 years. Ability to maintain balance was assessed using Functional Reach Test (FRT) and Sharpened Romberg Test (SRT). Anthropometric data including age, weight, height, arm length, leg length, bi-acromial breadth, foot length and trunk length were also collected. Analysis was done using Pearson’s Product Moment Correlation Coefficient and Independent T-test, while level of significance was set as p

A Study of Removing SUVA and Trihalomethanes by Biological Activated Carbon

SUVA (equivalent to UV254/DOC) value in raw water is a precursor for the formation of trihalomethane during chlorination at a water treatment plant. This study collected rapidly filtered water from an advanced water treatment plant for use in experiments on raw water. The removal rate of treating the trihalomethanes formation potential (THMFP) was conducted by using a biological activated carbon. The hydraulic retention time and SUVA loading were major factors in biological degradation tests. The results showed that biological powder-activated carbon (BPAC) lowered the average concentration of UV254 and value of SUVA in raw water. A removal efficiency of THMFP was present in the treatment of the three primary organic carbon items. These results highlighted the importance of the BPAC had an excellent treatment efficiency on THMFP.

Experimental Testing of Statistical Size Effect in Civil Engineering Structures

The presented paper copes with an experimental evaluation of a model based on modified Weibull size effect theory. Classical statistical Weibull theory was modified by introducing a new parameter (correlation length lp) representing the spatial autocorrelation of a random mechanical properties of material. This size effect modification was observed on two different materials used in civil engineering: unreinforced (plain) concrete and multi-filament yarns made of alkaliresistant (AR) glass which are used for textile-reinforced concrete. The behavior under flexural, resp. tensile loading was investigated by laboratory experiments. A high number of specimens of different sizes was tested to obtain statistically significant data which were subsequently corrected and statistically processed. Due to a distortion of the measured displacements caused by the unstiff experiment device, only the maximal load values were statistically evaluated. Results of the experiments showed a decreasing strength with an increasing sample length. Size effect curves were obtained and the correlation length was fitted according to measured data. Results did not exclude the existence of the proposed new parameter lp.

Simulation Model of an Ultra-Light Overhead Conveyor System; Analysis of the Process in the Warehouse

Ultra-light overhead conveyor systems are rope-based conveying systems with individually driven vehicles. The vehicles can move automatically on the rope and this can be realized by energy and signals. The ultra-light overhead conveyor systems always must be integrated with a logistical process by finding a best way for a cheaper material flow in order to guarantee precise and fast workflows. This paper analyzes the process of an ultra-light overhead conveyor system using necessary assumptions. The analysis consists of three scenarios. These scenarios are based on raising the vehicle speeds with equal increments at each case. The correlation between the vehicle speed and system throughput is investigated. A discrete-event simulation model of an ultra-light overhead conveyor system is constructed using DOSIMIS-3 software to implement three scenarios. According to simulation results; the optimal scenario, hence the optimal vehicle speed, is found out among three scenarios. This simulation model demonstrates the effect of increased speed on the system throughput.

Real Time Acquisition and Psychoacoustic Analysis of Brain Wave

Psychoacoustics has become a potential area of research due to the growing interest of both laypersons and medical and mental health professionals. Non invasive brain computer interface like Electroencephalography (EEG) is widely being used in this field. An attempt has been made in this paper to examine the response of EEG signals to acoustic stimuli further analyzing the brain electrical activity. The real time EEG is acquired for 6 participants using a cost effective and portable EMOTIV EEG neuro headset. EEG data analysis is further done using EMOTIV test bench, EDF browser and EEGLAB (MATLAB Tool) application software platforms. Spectral analysis of acquired neural signals (AF3 channel) using these software platforms are clearly indicative of increased brain activity in various bands. The inferences drawn from such an analysis have significant correlation with subject’s subjective reporting of the experiences. The results suggest that the methodology adopted can further be used to assist patients with sleeping and depressive disorders.

Influence of Strength Abilities on Quality of the Handstand

The contribution deals with influence of strength abilities on quality of performance of static balance movement structure – handstand. To test the strength abilities we selected following tests: number of push-ups per minute and persistence in trunk backward bend in sitting position. We tested the dependent variable by three tests – persistence in handstand position on a stabilometric platform, persistence in handstand position and evaluation of quality of handstand performance. Pearson’s correlation coefficient was used to formulate the relationship between variables. The results showed a statistically significant dependence using which we deduced conclusions for training practice.

Dynamic Ultrasound Scatterer Simulation Model Using Field-II and FEM for Speckle Tracking

There is a growing interest in the use of ultrasonic speckle tracking for biomedical image formation of tissue deformation. Speckle tracking is angle independent and has an ability to differentiate soft tissue into benign and malignant regions. In this paper a simulation model for dynamic ultrasound scatterer is presented. The model composes Field-II ultrasonic scatterers and FEM (ANSYS-11) nodes as a regional tissue deformation. A performance evaluation is presented on axial displacement and strain fields estimation of a uniformly elastic model, using speckle tracking based 1D cross-correlation of optimally segmented pre and post-deformation frames. Optimum correlation window length is investigated in terms of highest signal-to-noise ratio (SNR) for a selected region of interest of a smoothed displacement field. Finally, gradient based strain field of both smoothed and non-smoothed displacement fields are compared. Simulation results from the model are shown to compare favorably with FEM results.

Semantic Support for Hypothesis-Based Research from Smart Environment Monitoring and Analysis Technologies

Improvements in the data fusion and data analysis phase of research are imperative due to the exponential growth of sensed data. Currently, there are developments in the Semantic Sensor Web community to explore efficient methods for reuse, correlation and integration of web-based data sets and live data streams. This paper describes the integration of remotely sensed data with web-available static data for use in observational hypothesis testing and the analysis phase of research. The Semantic Reef system combines semantic technologies (e.g., well-defined ontologies and logic systems) with scientific workflows to enable hypothesis-based research. A framework is presented for how the data fusion concepts from the Semantic Reef architecture map to the Smart Environment Monitoring and Analysis Technologies (SEMAT) intelligent sensor network initiative. The data collected via SEMAT and the inferred knowledge from the Semantic Reef system are ingested to the Tropical Data Hub for data discovery, reuse, curation and publication.

Experimental Investigation of Surface Roughness Effect on Single Phase Fluid Flow and Heat Transfer in Micro-Tube

An experimental investigation was conducted to study the effect of surface roughness on friction factor and heat transfer characteristics in single-phase fluid flow in a stainless steel micro-tube having diameter of 0.85 mm and average internal surface roughness of 1.7 μm with relative surface roughness of 0.002. Distilled water and R134a liquids were used as the working fluids and testing was conducted with Reynolds numbers ranging from 100 to 10,000 covering laminar, transition and turbulent flow conditions. The experiments were conducted with the micro-tube oriented horizontally with uniform heat fluxes applied at the test section. The results indicated that the friction factor of both water and R134a can be predicted by the Hagen-Poiseuille equation for laminar flow and the modified Miller correlation for turbulent flow and early transition from laminar to turbulent flows. The heat transfer results of water and R134a were in good agreement with the conventional theory in the laminar flow region and lower than the Adam’s correlation for turbulent flow region which deviates from conventional theory.

Analysis of Supply Side Factors Affecting Bank Financing of Non-Oil Exports in Nigeria

The banking sector poses a lot of problems in Nigeria in general and the non-oil export sector in particular. The banks' lack effectiveness in handling small, medium or long-term credit risk (lack of training of loan officers, lack of information on borrowers and absence of a reliable credit registry) results in non-oil exporters being burdened with high requirements, such as up to three years of financial statements, enough collateral to cover both the loan principal and interest (including a cash deposit that may be up to 30% of the loans' net present value), and to provide every detail of the international trade transaction in question. The stated problems triggered this research. Consequently, information on bank financing of non-oil exports was collected from 100 respondents from the 20 Deposit Money Banks (DMBs) in Nigeria. The data was analysed by the use of descriptive statistics correlation and regression. It is found that, Nigerian banks are participants in the financing of non-oil exports. Despite their participation, the rate of interest for credit extended to non-oil export is usually high, ranging between 15-20%. Small and medium sized non-oil export businesses lack the credit history for banks to judge them as reputable. Banks also consider the non-oil export sector very risky for investment. The banks actually do grant less credit than the exporters may require and therefore are not properly funded by banks. Banks grant very low volume of foreign currency loan in addition to, unfavorable exchange rate at which Naira is exchanged to the Dollar and other currencies in the country. This makes importation of inputs costly and negatively impacted on the non-oil export performance in Nigeria.

Distance Estimation for Radar Systems Using DS-UWB Signals

In this paper, we propose a distance estimation scheme for radar systems using direct sequence ultra wideband (DS-UWB) signals. The proposed distance estimation scheme averages out the noise by accumulating the correlator outputs of the radar, and thus, helps the radar to employ a short-length DS-UWB signal reducing the correlation processing time. Numerical results confirm that the proposed distance estimation scheme provides a better estimation performance and a reduced correlation processing time compared with those of the conventional DS-UWB radars.

Performance Investigation of Solid-Rocket Motor with Nozzle Throat Erosion

In order to determine the performance and key design parameters of rocket, the erosion of nozzle throat during solid rocket motor burning have to be calculated. This study aims to predict the nozzle throat erosion in solid rocket motors according to the thrust profile of motor in operating conditions and develop a model for optimum performance of rocket. We investigate the throat radius change in the static test programs. The standard method and thrust coefficient  are used for adjusting into the ideal performance for conical nozzles. Pressure and thrust data acquired from the tests are analyzed to determine the instantaneous nozzle throat diameter variation throughout the test duration. The result shows good agreement of calculated correlation comparing with measured erosion rate data showing agreement within 1.6 mm/s. Nozzle thrust coefficient loss is found approximately 24% form nozzle throat erosion during burning.

Unambiguous Signal Acquisition Based On Recombination of Sub-Correlations of BOC Signals

Due to side-peaks of autocorrelation function, the binary offset carrier (BOC) signal acquisition suffers from an ambiguity when one of the side-peaks is acquired. In this paper, we first analyze that the BOC autocorrelation is made up of the sum of subcorrelations, and then, remove the side-peaks causing the ambiguity by recombining the sub-correlations. The proposed scheme is shown to remove the side-peaks completely. From numerical results, it is confirmed that the proposed scheme outperforms the conventional schemes in terms of the receiver operating characteristic and mean acquisition time.

The Impact of Copper and Zinc Deficiency on Milk Production Performances of Intensively Grazed Dairy Cows on the North-East of Romania

The influence of copper and zinc supplements on milk production performances and health indicators was tested in a 20- week feeding trial, with 40 Holstein-Friesian lactating cows, devided in four groups (copper, zinc, copper-zinc and control). Correlations of the Cu and Zn plasma values with some animal performance criteria of health (body condition score and somatic cell counts) and production (milk yield, peak milk yield, fat and crude protein content) were done. During the 140 days of the experiment, the two added minerals caused a statistically significant increase (p < 0.05) of their plasma values after the peak of the cows’ lactations. It was also observed that subjects that have received copper and zinc supplements had the lowest number of somatic cell counts in milk. The Pearson correlation test showed a positive corellation (p = 0.007, r = + 0.851) between the plasma Zn and the milk production. The improvement of the nutritional status improved the milk production performances of the cows as well as their health performances.

Secondary Ion Mass Spectrometry of Proteins

The adsorption of bovine serum albumin (BSA), immunoglobulin G (IgG) and fibrinogen (Fgn) on fluorinated selfassembled monolayers have been studied using time of flight secondary ion mass spectrometry (ToF-SIMS) and Spectroscopic Ellipsometry (SE). The objective of the work has to establish the utility of ToF-SIMS for the determination of the amount of protein adsorbed on the surface. Quantification of surface adsorbed proteins was carried out using SE and a good correlation between ToF-SIMS results and SE was achieved. The surface distribution of proteins were also analysed using Atomic Force Microscopy (AFM). We show that the surface distribution of proteins strongly affect the ToFSIMS results.

Indicator of Small Calcification Detection in Ultrasonography using Decorrelation of Forward Scattered Waves

For the improvement of the ability in detecting small calcifications using Ultrasonography (US) we propose a novel indicator of calcifications in an ultrasound B-mode image without decrease in frame rate. Since the waveform of an ultrasound pulse changes at a calcification position, the decorrelation of adjacent scan lines occurs behind a calcification. Therefore, we employ the decorrelation of adjacent scan lines as an indicator of a calcification. The proposed indicator depicted wires 0.05 mm in diameter at 2 cm depth with a sensitivity of 86.7% and a specificity of 100%, which were hardly detected in ultrasound B-mode images. This study shows the potential of the proposed indicator to approximate the detectable calcification size using an US device to that of an X-ray imager, implying the possibility that an US device will become a convenient, safe, and principal clinical tool for the screening of breast cancer.

Effect of Initial Conditions on Aerodynamic and Acoustic Characteristics of High Subsonic Jets from Sharp Edged Circular Orifice

The present work involves measurements to examine the effects of initial conditions on aerodynamic and acoustic characteristics of a Jet at M=0.8 by changing the orientation of sharp edged orifice plate. A thick plate with chamfered orifice presented divergent and convergent openings when it was flipped over. The centerline velocity was found to decay more rapidly for divergent orifice and that was consistent with the enhanced mass entrainment suggesting quicker spread of the jet compared with that from the convergent orifice. The mixing layer region elucidated this effect of initial conditions at an early stage – the growth was found to be comparatively more pronounced for the divergent orifice resulting in reduced potential core size. The acoustic measurements, carried out in the near field noise region outside the jet within potential core length, showed the jet from the divergent orifice to be less noisy. The frequency spectra of the noise signal exhibited that in the initial region of comparatively thin mixing layer for the convergent orifice, the peak registered a higher SPL and a higher frequency as well. The noise spectra and the mixing layer development suggested a direct correlation between the coherent structures developing in the initial region of the jet and the noise captured in the surrounding near field.

Modeling Ecological Responses of Some Forage Legumes in Iran

Grasslands of Iran are encountered with a vast desertification and destruction. Some legumes are plants of forage importance with high palatability. Studied legumes in this project are Onobrychis, Medicago sativa (alfalfa) and Trifolium repens. Seeds were cultivated in research field of Kaboutarabad (33 km East of Isfahan, Iran) with an average 80 mm. annual rainfall. Plants were cultivated in a split plot design with 3 replicate and two water treatments (weekly irrigation, and under stress with same amount per 15 days interval). Water entrance to each plots were measured by Partial flow. This project lasted 20 weeks. Destructive samplings (1m2 each time) were done weekly. At each sampling plants were gathered and weighed separately for each vegetative parts. An Area Meter (Vista) was used to measure root surface and leaf area. Total shoot and root fresh and dry weight, leaf area index and soil coverage were evaluated too. Dry weight was achieved in 750c oven after 24 hours. Statgraphic and Harvard Graphic software were used to formulate and demonstrate the parameters curves due to time. Our results show that Trifolium repens has affected 60 % and Medicago sativa 18% by water stress. Onobrychis total fresh weight was reduced 45%. Dry weight or Biomass in alfalfa is not so affected by water shortage. This means that in alfalfa fields we can decrease the irrigation amount and have some how same amount of Biomass. Onobrychis show a drastic decrease in Biomass. The increases in total dry matter due to time in studied plants are formulated. For Trifolium repens if removal or cattle entrance to meadows do not occurred at perfect time, it will decrease the palatability and water content of the shoots. Water stress in a short period could develop the root system in Trifolium repens, but if it last more than this other ecological and soil factors will affect the growth of this plant. Low level of soil water is not so important for studied legume forges. But water shortage affect palatability and water content of aerial parts. Leaf area due to time in studied legumes is formulated. In fact leaf area is decreased by shortage in available water. Higher leaf area means higher forage and biomass production. Medicago and Onobrychis reach to the maximum leaf area sooner than Trifolium and are able to produce an optimum soil cover and inhibit the transpiration of soil water of meadows. Correlation of root surface to Total biomass in studied plants is formulated. Medicago under water stress show a 40% decrease in crown cover while at optimum condition this amount reach to 100%. In order to produce forage in areas without soil erosion Medicago is the best choice even with a shortage in water resources. It is tried to represent the growth simulation of three famous Forage Legumes. By growth simulation farmers and range managers could better decide to choose best plant adapted to water availability without designing different time and labor consuming field experiments.