An Improved Prediction Model of Ozone Concentration Time Series Based On Chaotic Approach

This study is focused on the development of prediction models of the Ozone concentration time series. Prediction model is built based on chaotic approach. Firstly, the chaotic nature of the time series is detected by means of phase space plot and the Cao method. Then, the prediction model is built and the local linear approximation method is used for the forecasting purposes. Traditional prediction of autoregressive linear model is also built. Moreover, an improvement in local linear approximation method is also performed. Prediction models are applied to the hourly Ozone time series observed at the benchmark station in Malaysia. Comparison of all models through the calculation of mean absolute error, root mean squared error and correlation coefficient shows that the one with improved prediction method is the best. Thus, chaotic approach is a good approach to be used to develop a prediction model for the Ozone concentration time series.

River Flow Prediction Using Nonlinear Prediction Method

River flow prediction is an essential to ensure proper management of water resources can be optimally distribute water to consumers. This study presents an analysis and prediction by using nonlinear prediction method involving monthly river flow data in Tanjung Tualang from 1976 to 2006. Nonlinear prediction method involves the reconstruction of phase space and local linear approximation approach. The phase space reconstruction involves the reconstruction of one-dimensional (the observed 287 months of data) in a multidimensional phase space to reveal the dynamics of the system. Revenue of phase space reconstruction is used to predict the next 72 months. A comparison of prediction performance based on correlation coefficient (CC) and root mean square error (RMSE) have been employed to compare prediction performance for nonlinear prediction method, ARIMA and SVM. Prediction performance comparisons show the prediction results using nonlinear prediction method is better than ARIMA and SVM. Therefore, the result of this study could be used to develop an efficient water management system to optimize the allocation water resources.

Performance Characteristics of Some Small Scale Wind Turbines Fabricated in Tanzania

In this study, a field testing has been carried out to assess the power characteristics of some small scale wind turbines fabricated by one native technician from Tanzania. Two Horizontal Axis Wind Turbines (HAWTs), one with five and other with sixteen blades were installed at a height of 2.4m above the ground. The rotation speed of the rotor blade and wind speed approaching the turbines were measured simultaneously. The data obtained were used to determine how the power coefficient varies as a function of tip speed ratio and also the way in which the output power compares with available power in the wind for each turbine. For the sixteen-bladed wind turbine the maximum value of power coefficient of about 0.14 was found to occur at a tip speed ratio of around 0.65 while for the five bladed, these extreme values were respectively attained at approximately 0.2 and 1.7. The five bladed-wind turbine was found to have a higher power efficiency of about 37.5% which is higher compared to the sixteen bladed wind turbine whose corresponding value was 14.37%. This is what would be expected, as the smaller the number of blades of a wind turbine, the higher the electric power efficiency and vice versa. Some of the main reasons for the low efficiency of these machines may be due to the low aerodynamic efficiency of the turbine or low efficiency of the transmission mechanisms such as gearbox and generator which were not examined in this study. It is recommended that some other researches be done to investigate the power efficiency of such machines from different manufacturers in the country. The manufacturers should also be encouraged to use fewer blades in their designs so as to improve the efficiency and at the same time reduce materials used to fabricate the blades. The power efficiency of the electric generators used in the locally fabricated wind turbines should also be examined.

On the Steady-State Performance Characteristics of Finite Hydrodynamic Journal Bearing under Micro-Polar Lubrication with Turbulent Effect

The objective of the present paper is to theoretically investigate the steady-state performance characteristics of journal bearing of finite width, operating with micropolar lubricant in a turbulent regime. In this analysis, the turbulent shear stress coefficients are used based on the Constantinescu’s turbulent model suggested by Taylor and Dowson with the assumption of parallel and inertia-less flow. The numerical solution of the modified Reynolds equation has yielded the distribution of film pressure which determines the static performance characteristics in terms of load capacity, attitude angle, end flow rate and frictional parameter at various values of eccentricity ratio, non-dimensional characteristics length, coupling number and Reynolds number.

Energy Efficient Transmission of Image over DWT-OFDM System

In many applications retransmissions of lost packets are not permitted. OFDM is a multi-carrier modulation scheme having excellent performance which allows overlapping in frequency domain. With OFDM there is a simple way of dealing with multipath relatively simple DSP algorithms.  In this paper, an image frame is compressed using DWT, and the compressed data is arranged in data vectors, each with equal number of coefficients. These vectors are quantized and binary coded to get the bit steams, which are then packetized and intelligently mapped to the OFDM system. Based on one-bit channel state information at the transmitter, the descriptions in order of descending priority are assigned to the currently good channels such that poorer sub-channels can only affect the lesser important data vectors. We consider only one-bit channel state information available at the transmitter, informing only about the sub-channels to be good or bad. For a good sub-channel, instantaneous received power should be greater than a threshold Pth. Otherwise, the sub-channel is in fading state and considered bad for that batch of coefficients. In order to reduce the system power consumption, the mapped descriptions onto the bad sub channels are dropped at the transmitter. The binary channel state information gives an opportunity to map the bit streams intelligently and to save a reasonable amount of power. By using MAT LAB simulation we can analysis the performance of our proposed scheme, in terms of system energy saving without compromising the received quality in terms of peak signal-noise ratio.

Influence of Gas-Liquid Separator Design on Performance of Airlift Bioreactors

The performance of airlift bioreactors are closely related with their geometry, especially the gas-liquid separator design. In this study, the influence of the gas-liquid separator geometry on oxygen transfer and gas hold-up was evaluated in 10-L concentric-tube airlift bioreactor operating with distilled water and xanthan gum solution. The specific airflow rate (ɸAIR) exhibited the higher effect on the oxygen transfer coefficient (kLa) for both fluids. While the gas-liquid separator openness angle (α) and liquid volume fraction on the gas-liquid separator (VGLS) have presented opposite effects on oxygen mass transfer, they affected negatively the global gas hold-up of distilled water system. The best degassing zone geometry corresponded to a 90° openness angle with 10% of the liquid on it.

Bernstein-Galerkin Approach for Perturbed Constant-Coefficient Differential Equations, One-Dimensional Analysis

A numerical approach for solving constant-coefficient differential equations whose solutions exhibit boundary layer structure is built by inserting Bernstein Partition of Unity into Galerkin variational weak form. Due to the reproduction capability of Bernstein basis, such implementation shows excellent accuracy at boundaries and is able to capture sharp gradients of the field variable by p-refinement using regular distributions of equi-spaced evaluation points. The approximation is subjected to convergence experimentation and a procedure to assemble the discrete equations without a background integration mesh is proposed.

Lime-Pozzolan Plasters with Enhanced Thermal Capacity

A new type of lightweight plaster with the thermal capacity enhanced by PCM (Phase Change Material) addition is analyzed. The basic physical characteristics, namely the bulk density, matrix density, total open porosity, and pore size distribution are measured at first. For description of mechanical properties, compressive strength measurements are done. The thermal properties are characterized by transient impulse techniques as well as by DSC analysis that enables determination of the specific heat capacity as a function of temperature. The resistivity against the liquid water ingress is described by water absorption coefficient measurement. The experimental results indicate a good capability of the designed plaster to moderate effectively the interior climate of buildings.

Vibration Analysis of Functionally Graded Engesser- Timoshenko Beams Subjected to Axial Load Located on a Continuous Elastic Foundation

This paper studies free vibration of functionally graded beams Subjected to Axial Load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Engesser-Timoshenko beam theory. The Young's modulus of beam is assumed to be graded continuously across the beam thickness. Applying the Hamilton's principle, the governing equation is established. Resulting equation is solved using the Euler's Equation. The effects of the constituent volume fractions and foundation coefficient on the vibration frequency are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Mechanical Properties of Pea Pods (Pisium sativum Var. Shamshiri)

Knowing pea pods mechanical resistance against dynamic forces are important for design of combine harvester. In pea combine harvesters, threshing is accomplished by two mechanical actions of impact and friction forces. In this research, the effects of initial moisture content and needed impact and friction energy on threshing of pea pods were studied. An impact device was built based on pendulum mechanism. The experiments were done at three initial moisture content levels of 12.1, 23.5 and 39.5 (%w.b.) for both impact and friction methods. Three energy levels of 0.088, 0.126 and 0.202 J were used for impact method and for friction method three energy levels of 0.784, 0.930 and 1.351 J. The threshing percentage was measured in each method. By using a frictional device, kinetic friction coefficients at above moisture contents were measured 0.257, 0.303 and 0.336, respectively. The results of variance analysis of the two methods showed that moisture content and energy have significant effects on the threshing percentage.

Analysis of a Self-Acting Air Journal Bearing: Effect of Dynamic Deformation of Bump Foil

A theoretical investigation on the effects of both steady-state and dynamic deformations of the foils on the dynamic performance characteristics of a self-acting air foil journal bearing operating under small harmonic vibrations is proposed. To take into account the dynamic deformations of foils, the perturbation method is used for determining the gas-film stiffness and damping coefficients for given values of excitation frequency, compressibility number, and compliance factor of the bump foil. The nonlinear stationary Reynolds’ equation is solved by means of the Galerkins’ finite element formulation while the finite differences method are used to solve the first order complex dynamic equations resulting from the perturbation of the nonlinear transient compressible Reynolds’ equation. The stiffness of a bump is uniformly distributed throughout the bearing surface (generation I bearing). It was found that the dynamic properties of the compliant finite length journal bearing are significantly affected by the compliance of foils especially whenthe dynamic deformation of foils is considered in addition to the static one by applying the principle of superposition.

Anthropometric Correlates of Balance Performance in Non-Institutionalized Elderly

Purpose: The fear of falling is a major concern among the elderly. Sixty-five percent of individuals older than 60 years of age experience loss of balance often on a daily basis. Therefore, balance assessment in the elderly deserves special attention due to its importance in functional mobility and safety. This study aimed at assessing balance performance and comparing some anthropometric parameters among a Nigerian non-institutionalized elderly population. Methods: Sixty one elderly subjects (31 males and 30 females) participated in this study. Their ages ranged between 62 and 84 years. Ability to maintain balance was assessed using Functional Reach Test (FRT) and Sharpened Romberg Test (SRT). Anthropometric data including age, weight, height, arm length, leg length, bi-acromial breadth, foot length and trunk length were also collected. Analysis was done using Pearson’s Product Moment Correlation Coefficient and Independent T-test, while level of significance was set as p

Intermolecular Dynamics between Alcohols and Fatty Acid Ester Solvents

This work focused on the interactions which occur between ester solvents and alcohol solutes. The alcohols selected ranged from the simplest alcohol (methanol) to C10-alcohols, and solubility predictions in the form of infinite dilution activity coefficients were made using the Modified UNIFAC Dortmund group contribution model. The model computation was set up on a Microsoft Excel spreadsheet specifically designed for this purpose. It was found that alcohol/ ester interactions yielded an increase in activity coefficients (i.e. became less soluble) with an increase in the size of the ester solvent molecule. Furthermore, activity coefficients decreased with an increase in the size of the alcohol solute. The activity coefficients also decreased with an increase in the degree of unsaturation of the ester hydrocarbon tail. Tertiary alcohols yielded lower activity coefficients than primary alcohols. Finally, cyclic alcohols yielded higher activity coefficients than straight-chain alcohols until a point is reached where the trend is reversed, referred to as the ‘crossover’ point.

On One Mathematical Model for Filtration of Weakly Compressible Chemical Compound in the Porous Heterogeneous 3D Medium. Part I: Model Construction with the Aid of the Ollendorff Approach

A filtering problem of almost incompressible liquid chemical compound in the porous inhomogeneous 3D domain is studied. In this work general approaches to the solution of twodimensional filtering problems in ananisotropic, inhomogeneous and multilayered medium are developed, and on the basis of the obtained results mathematical models are constructed (according to Ollendorff method) for studying the certain engineering and technical problem of filtering the almost incompressible liquid chemical compound in the porous inhomogeneous 3D domain. For some of the formulated mathematical problems with additional requirements for the structure of the porous inhomogeneous medium, namely, its isotropy, spatial periodicity of its permeability coefficient, solution algorithms are proposed. Continuation of the current work titled ”On one mathematical model for filtration of weakly compressible chemical compound in the porous heterogeneous 3D medium. Part II: Determination of the reference directions of anisotropy and permeabilities on these directions” will be prepared in the shortest terms by the authors.

Existence of Periodic Solution for p-Laplacian Neutral Rayleigh Equation with Sign-variable Coefficient of Non Linear Term

As p-Laplacian equations have been widely applied in field of the fluid mechanics and nonlinear elastic mechanics, it is necessary to investigate the periodic solutions of functional differential equations involving the scalar p-Laplacian. By using Mawhin’s continuation theorem, we study the existence of periodic solutions for p-Laplacian neutral Rayleigh equation (ϕp(x(t)−c(t)x(t − r))) + f(x(t)) + g1(x(t − τ1(t, |x|∞))) + β(t)g2(x(t − τ2(t, |x|∞))) = e(t), It is meaningful that the functions c(t) and β(t) are allowed to change signs in this paper, which are different from the corresponding ones of known literature.

Automatic Detection of Breast Tumors in Sonoelastographic Images Using DWT

Breast Cancer is the most common malignancy in women and the second leading cause of death for women all over the world. Earlier the detection of cancer, better the treatment. The diagnosis and treatment of the cancer rely on segmentation of Sonoelastographic images. Texture features has not considered for Sonoelastographic segmentation. Sonoelastographic images of 15 patients containing both benign and malignant tumorsare considered for experimentation.The images are enhanced to remove noise in order to improve contrast and emphasize tumor boundary. It is then decomposed into sub-bands using single level Daubechies wavelets varying from single co-efficient to six coefficients. The Grey Level Co-occurrence Matrix (GLCM), Local Binary Pattern (LBP) features are extracted and then selected by ranking it using Sequential Floating Forward Selection (SFFS) technique from each sub-band. The resultant images undergo K-Means clustering and then few post-processing steps to remove the false spots. The tumor boundary is detected from the segmented image. It is proposed that Local Binary Pattern (LBP) from the vertical coefficients of Daubechies wavelet with two coefficients is best suited for segmentation of Sonoelastographic breast images among the wavelet members using one to six coefficients for decomposition. The results are also quantified with the help of an expert radiologist. The proposed work can be used for further diagnostic process to decide if the segmented tumor is benign or malignant.

Semiconvergence of Alternating Iterative Methods for Singular Linear Systems

In this paper, we discuss semiconvergence of the alternating iterative methods for solving singular systems. The semiconvergence theories for the alternating methods are established when the coefficient matrix is a singular matrix. Furthermore, the corresponding comparison theorems are obtained.

Fermat’s Last Theorem a Simple Demonstration

This paper presents two solutions to the Fermat’s Last Theorem (FLT). The first one using some algebraic basis related to the Pythagorean theorem, expression of equations, an analysis of their behavior, when compared with power  and power  and using " the “Well Ordering Principle” of natural numbers it is demonstrated that in Fermat equation . The second one solution is using the connection between  and power  through the Pascal’s triangle or  Newton’s binomial coefficients, where de Fermat equation do not fulfill the first coefficient, then it is impossible that: zn=xn+yn for n>2 and (x, y, z) E Z+ - {0}  

Influence of Strength Abilities on Quality of the Handstand

The contribution deals with influence of strength abilities on quality of performance of static balance movement structure – handstand. To test the strength abilities we selected following tests: number of push-ups per minute and persistence in trunk backward bend in sitting position. We tested the dependent variable by three tests – persistence in handstand position on a stabilometric platform, persistence in handstand position and evaluation of quality of handstand performance. Pearson’s correlation coefficient was used to formulate the relationship between variables. The results showed a statistically significant dependence using which we deduced conclusions for training practice.

A 3 Dimensional Simulation of the Repeated Load Triaxial Test

A typical flexible pavement structure consists of the surface, base, sub-base and subgrade soil. The loading traffic is transferred from the top layer with higher stiffness to the layer below with less stiffness. Under normal traffic loading, the behaviour of flexible pavement is very complex and can be predicted by using the repeated load triaxial test equipment in the laboratory. However, the nature of the repeated load triaxial testing procedure is considered time-consuming, complicated and expensive, and it is a challenge to carry out as a routine test in the laboratory. Therefore, the current paper proposes a numerical approach to simulate the repeated load triaxial test by employing the discrete element method. A sample with particle size ranging from 2.36mm to 19.0mm was constructed. Material properties, which included normal stiffness, shear stiffness, coefficient of friction, maximum dry density and particle density, were used as the input for the simulation. The sample was then subjected to a combination of deviator and confining stress and it was found that the discrete element method is able to simulate the repeated load triaxial test in the laboratory.