Investigation of Genetic Epidemiology of Metabolic Compromises in ß Thalassemia Minor Mutation: Phenotypic Pleiotropy

Human genome is not only the evolutionary summation of all advantageous events, but also houses lesions of deleterious foot prints. A single gene mutation sometimes may express multiple consequences in numerous tissues and a linear relationship of the genotype and the phenotype may often be obscure. ß Thalassemia minor, a transfusion independent mild anaemia, coupled with environment among other factors may articulate into phenotypic pleotropy with Hypocholesterolemia, Vitamin D deficiency, Tissue hypoxia, Hyper-parathyroidism and Psychological alterations. Occurrence of Pancreatic insufficiency, resultant steatorrhoea, Vitamin-D (25-OH) deficiency (13.86 ngm/ml) with Hypocholesterolemia (85mg/dl) in a 30 years old male ß Thal-minor patient (Hemoglobin 11mg/dl with Fetal Hemoglobin 2.10%, Hb A2 4.60% and Hb Adult 84.80% and altered Hemogram) with increased Para thyroid hormone (62 pg/ml) & moderate Serum Ca+2 (9.5mg/ml) indicate towards a cascade of phenotypic pleotropy where the ß Thalassemia mutation ,be it in the 5’ cap site of the mRNA , differential splicing etc in heterozygous state is effecting several metabolic pathways. Compensatory extramedulary hematopoiesis may not coped up well with the stressful life style of the young individual and increased erythropoietic stress with high demand for cholesterol for RBC membrane synthesis may have resulted in Hypocholesterolemia.Oxidative stress and tissue hypoxia may have caused the pancreatic insufficiency, leading to Vitamin D deficiency. This may in turn have caused the secondary hyperparathyroidism to sustain serum Calcium level. Irritability and stress intolerance of the patient was a cumulative effect of the vicious cycle of metabolic compromises. From these findings we propose that the metabolic deficiencies in the ß Thalassemia mutations may be considered as the phenotypic display of the pleotropy to explain the genetic epidemiology. According to the recommendations from the NIH Workshop on Gene-Environment Interplay in Common Complex Diseases: Forging an Integrative Model, study design of observations should be informed by gene-environment hypotheses and results of a study (genetic diseases) should be published to inform future hypotheses. Variety of approaches is needed to capture data on all possible aspects, each of which is likely to contribute to the etiology of disease. Speakers also agreed that there is a need for development of new statistical methods and measurement tools to appraise information that may be missed out by conventional method where large sample size is needed to segregate considerable effect. A meta analytic cohort study in future may bring about significant insight on to the title comment.

Instability Problem of Turbo-Machines with Radial Distortion Problems

In the upstream we place a piece of ring and rotate it with 83Hz, 166Hz, 333Hz,and 666H to find the effect of the periodic distortion.In the experiment this type of the perturbation will not allow since the mechanical failure of any parts of the equipment in the upstream will destroy the blade system. This type of study will be only possible by CFD. We use two pumps NS32 (ENSAM) and three blades pump (Tamagawa Univ). The benchmark computations were performed without perturbation parts, and confirm the computational results well agreement in head-flow rate. We obtained the pressure fluctuation growth rate that is representing the global instability of the turbo-system. The fluctuating torque components were 0.01Nm(5000rpm), 0.1Nm(10000rmp), 0.04Nm(20000rmp), 0.15Nm( 40000rmp) respectively. Only for 10000rpm(166Hz) the output toque was random, and it implies that it creates unsteady flow by separations on the blades, and will reduce the pressure loss significantly

Effect of Natural Animal Fillers on Polymer Rheology Behaviour

This paper deals with the evaluation of flow properties of polymeric matrix with natural animal fillers. Technical university of Liberec cooperates on the long-term development of “green materials“ that should replace conventionally used materials (especially in automotive industry). Natural fibres (of animal and plant origin) from all over the world are collected and adapted (drying, cutting etc.) for extrusion processing. Inside the extruder these natural additives are blended with polymeric (synthetic and biodegradable - PLA) matrix and created compound is subsequently cut for pellets in the wet way. These green materials with unique recipes are then studied and their mechanical, physical and processing properties are determined. The main goal of this research is to develop new ecological materials very similar to unfilled polymers. In this article the rheological behaviour of chosen natural animal fibres is introduced considering their shape and surface that were observed with use of SEM microscopy.

Impregnation of Cupper into Kanuma Volcanic Ash Soil to Improve Mercury Sorption Capacity

The present study attempted to improve the Mercury (Hg) sorption capacity of kanuma volcanic ash soil (KVAS) by impregnating the cupper (Cu). Impregnation was executed by 1 and 5% Cu powder and sorption characterization of optimum Hg removing Cu impregnated KVAS was performed under different operational conditions, contact time, solution pH, sorbent dosage and Hg concentration using the batch operation studies. The 1% Cu impregnated KVAS pronounced optimum improvement (79%) in removing Hg from water compare to control. The present investigation determined the equilibrium state of maximum Hg adsorption at 6 h contact period. The adsorption revealed a pH dependent response and pH 3.5 showed maximum sorption capacity of Hg. Freundlich isotherm model is well fitted with the experimental data than that of Langmuir isotherm. It can be concluded that the Cu impregnation improves the Hg sorption capacity of KVAS and 1% Cu impregnated KVAS could be employed as cost-effective adsorbent media for treating Hg contaminated water.

The Effect of Hylocereus polyrhizus and Hylocereus undatus on Physicochemical, Proteolysis, and Antioxidant Activity in Yogurt

Yogurt is a coagulated milk product obtained from the lactic acid fermentation by the action of Lactobacillus bulgaricus and Streptococcus thermophilus. The additions of fruits into milk may enhance the taste and the therapeutical values of milk products. However fruits also may change the fermentation behaviour. In this present study, the changes in physicochemical, the peptide concentration, total phenolics content and the antioxidant potential of yogurt upon the addition of Hylocereus polyrhizus and Hylocereus undatus (white and red dragon fruit) were investigated. Fruits enriched yogurt (10%, 20%, 30% w/w) were prepared and the pH, TTA, syneresis measurement, peptide concentration, total phenolics content and DPPH antioxidant inhibition percentage were determined. Milk fermentation rate was enhanced in red dragon fruit yogurt for all doses (-0.3606 - -0.4126 pH/h) while only white dragon fruit yogurt with 20% and 30% (w/w) composition showed increment in fermentation rate (-0.3471 - -0.3609 pH/h) compared to plain yogurt (-0.3369pH/h). All dragon fruit enriched yogurts generally showed lower pH readings (pH 3.95 - 4.03) compared to plain yogurt (pH 4.05). Both fruit yogurts showed a higher lactic acid percentage (1.14-1.23%) compared to plain yogurt (1.08%). Significantly higher syneresis percentage (57.19 - 70.32%) compared to plain yogurt (52.93%) were seen in all fruit enriched yogurts. The antioxidant activity of plain yogurt (19.16%) was enhanced by the presence of white and red dragon fruit (24.97- 45.74%). All fruit enriched yogurt showed an increment in total phenolic content (36.44 - 64.43mg/ml) compared to plain yogurt (20.25mg/ml). However, the addition of white and red dragon fruit did not enhance the proteolysis of milk during fermentation. Therefore, it could be concluded that the addition of white and red dragon fruit into yogurt enhanced the milk fermentation rate, lactic acid content, syneresis percentage, antioxidant activity, and total phenolics content in yogurt.

Sliding-Mode Control of Synchronous Reluctance Motor

This paper presents a controller design technique for Synchronous Reluctance Motor to improve its dynamic performance with fast response and high accuracy. The sliding mode control is the most attractive and suitable method to use for this purpose, since it is simple in design and for its insensitivity to parameter variations or external disturbances. When this method implemented it yields fast dynamic response without overshoot and a zero steady-state error. The current loop control with decentralized sliding mode is presented in this paper. The mathematical model for the synchronous machine, the inverter and the controller is developed. The stability of the sliding mode controller is analyzed. Simulation of synchronous reluctance motor and the controller with PWM-inverter has been curried out, using the SIMULINK software package of MATLAB. Simulation results are presented to show the effectiveness of the approach.

Effects of Geometry of Disk Openers on Seed Slot Properties

Offset Double-Disk Opener (DDO) is a popular furrow opener in conservation tillage. It has some limitations such as negative suction to penetrate in the soil, hair pinning and mixing seed and fertilizer in the slot. Because of importance of separation of seed and fertilizer in the slot, by adding two horizontal mini disks to DDO a modified opener was made (MDO) which placed the fertilizer between and under two rows of seed. To consider performance of novel opener an indoor comparison test between DDO and MDO was performed at soil bin. The experiment was conducted with three working speeds (3, 6 and 8 km h-1), two bulk densities of soil (1.1 and 1.4 Mg m-3) and two levels of residues (1 and 2 ton ha-1). The experimental design consisted in a (3×2×2) complete randomized factorial with three replicates for each test. Moisture of seed furrow, separation of seed and fertilizer, hair pinning and resultant forces acting on the openers were used as assessing indexes. There was no significant difference between soil moisture content in slots created by DDO and MDO at 0-4 cm depth, but at 4-8 cm the in the slot created by MDO moisture content was higher about 9%. Horizontal force for both openers increased with increasing speed and soil bulk density. Vertical force for DDO was negative so it needed additional weight for penetrating in the soil, but vertical force for MDO was positive and, which can solve the challenge of penetration in the soil in DDO. In soft soil with heavy residues some trash was pushed by DDO into seed furrow (hair pinning) but at MDO seed were placed at clean groove. Lateral and vertical separation of seed and fertilizer was performed effectively by MDO (4.5 and 5 cm, respectively) while DDO put seed and fertilizer close to each other. Overall, the Modified Offset Double-disks (MDO) had better performance. So by adapting this opener with no-tillage drillers it would possible to have higher yield in conservation tillage where the most appropriate opener is disk type.

Experimental Study of the Pressure Drop after Fractal-Shaped Orifices in a Turbulent Flow Pipe

The fractal-shaped orifices are assumed to have a significant effect on the pressure drop downstream pipe flow due to their edge self-similarity shape which enhances the mixing properties. Here, we investigate the pressure drop after these fractals using a digital micro-manometer at different stations downstream a turbulent flow pipe then a direct comparison has been made with the pressure drop measured from regular orifices with the same flow area. Our results showed that the fractal-shaped orifices have a significant effect on the pressure drop downstream the flow. Also the pressure drop measured across the fractal-shaped orifices is noticed to be lower that that from ordinary orifices of the same flow areas. This result could be important in designing piping systems from point of view of losses consideration with the same flow control area. This is promising to use the fractal-shaped orifices as flowmeters as they can sense the pressure drop across them accurately with minimum losses than the regular ones.

Starting Pitcher Rotation in the Chinese Professional Baseball League based on AHP and TOPSIS

The rotation of starting pitchers is a strategic issue which has a significant impact on the performance of a professional team. Choosing an optimal starting pitcher from among many alternatives is a multi-criteria decision-making (MCDM) problem. In this study, a model using the Analytic Hierarchy Process (AHP) and Technique for Order Performance by Similarity to the Ideal Solution (TOPSIS) is proposed with which to arrange the starting pitcher rotation for teams of the Chinese Professional Baseball League. The AHP is used to analyze the structure of the starting pitcher selection problem and to determine the weights of the criteria, while the TOPSIS method is used to make the final ranking. An empirical analysis is conducted to illustrate the utilization of the model for the starting pitcher rotation problem. The results demonstrate the effectiveness and feasibility of the proposed model.

Fabrication of High Aluminum Content Mg alloys using a Horizontal Twin Roll Caster

This study was aimed for investigating of manufacturing high aluminum content Mg alloys using a horizontal twin roll caster. Recently, weight saving has been key issues for lighter transport equipments as well as electronic component parts. As alternative materials to aluminum alloys, developing magnesium alloy with higher strength has been expected. Normally high Aluminum content Mg alloy has poor ductility and is difficult to be rolled because of its high strength. However, twin roll casting process is suitable for manufacturing wrought Mg alloys because materials can be cast directly from molten metal. In this study, manufacturing of high aluminum content magnesium alloy sheet using the roll casting process has been carried out. Effects of manufacturing parameter, such as roll velocity, pouring temperature and roll gap, on casting was investigated. A microscopic observation of the crystals of cross section of as cast strip as well as rolled strip was conducted.

The Effects of Extracorporeal Shockwave Therapy on Pain, Function, Range of Motion and Strength in Patients with Plantar Fasciitis

Ten percent of the population will develop plantar fasciitis (PF) during their lifetime. Two million people are treated yearly accounting for 11-15% of visits to medical professionals. Treatment ranges from conservative to surgical intervention. The purpose of this study was to assess the effects of extracorporeal shockwave therapy (ECSWT) on heel pain, function, range of motion (ROM), and strength in patients with PF. One hundred subjects were treated with ECSWT and measures were taken before and three months after treatment. There was significant differences in visual analog scale scores for pain at rest (p=0.0001); after activity (p= 0.0001) and; overall improvement (p=0.0001). There was also significant improvement in Lower Extremity Functional Scale scores (p=0.0001); ankle plantarflexion (p=0.0001), dorsiflexion (p=0.001), and eversion (p=0.017),and first metatarsophalangeal joint flexion (p=0.002) and extension (p=0.003) ROM. ECSWT is an effective treatment improving heel pain, function and ROM in patients with PF.

The Effect of Correlated Service and Inter-arrival Times on System Performance

In communication networks where communication nodes are connected with finite capacity transmission links, the packet inter-arrival times are strongly correlated with the packet length and the link capacity (or the packet service time). Such correlation affects the system performance significantly, but little attention has been paid to this issue. In this paper, we propose a mathematical framework to study the impact of the correlation between the packet service times and the packet inter-arrival times on system performance. With our mathematical model, we analyze the system performance, e.g., the unfinished work of the system, and show that the correlation affects the system performance significantly. Some numerical examples are also provided.

A Dynamic Model for a Drill in the Drilling Process

The dynamic model of a drill in drilling process was proposed and investigated in this study. To assure a good drilling quality, the vibration variation on the drill tips during high speed drilling is needed to be investigated. A pre-twisted beam is used to simulate the drill. The moving Winkler-Type elastic foundation is used to characterize the tip boundary variation in drilling. Due to the variation of the drill depth, a time dependent dynamic model for the drill is proposed. Results simulated from this proposed model indicate that an abrupt natural frequencies drop are experienced as the drill tip tough the workpiece, and a severe vibration is induced. The effects of parameters, e.g. drilling speed, depth, drill size and thrust force on the drill tip responses studied.

Cutaneous Application of Royal Jelly Inhibits Skin Lesions in NC/Nga Mice, a Human-Like Mouse Model of Atopic Dermatitis

Anti-allergic effects of royal jelly were evaluated in a human-like mouse model of atopic dermatitis. NC/Nga mice were cutaneously applied with royal jelly for 6 weeks. Royal jelly-treated mice exhibited lower levels of serum total immunoglobulin E in comparison with controls. We found that the treatment decreased (11% to the control) expression of mRNA for aquaporin-3, which is involved in the modulation of epidermal hydration. Microarray analysis revealed more than 10-fold changes in the expression of several genes, such as transglutaminase 2, repetin, and keratins. In normal human epidermal keratinocytes, royal jelly extract suppressed interleukin-8 elevation induced by TNF-α and interferon-γ, suggesting direct anti-inflammatory activity in keratinocytes. Collectively, topical application of royal jelly may be useful for amelioration of lesions and inflammation in atopic dermatitis.

Nonlinear Torque Control for PMSM: A Lyapunov Technique Approach

This study presents a novel means of designing a simple and effective torque controller for Permanent Magnet Synchronous Motor (PMSM). The overall stability of the system is shown using Lyapunov technique. The Lyapunov functions used contain a term penalizing the integral of the tracking error, enhancing the stability. The tracking error is shown to be globally uniformly bounded. Simulation results are presented to show the effectiveness of the approach.

Antifungal Activity of Silver Colloidal Nanoparticles against Phytopathogenic Fungus (Phomopsis sp.) in Soybean Seeds

Among the many promising nanomaterials with antifungal properties, metal nanoparticles (silver nanoparticles) stand out due to their high chemical activity. Therefore, the aim of this study was to evaluate the effect of silver nanoparticles (AgNPs) against Phomopsis sp. AgNPs were synthesized by silver nitrate reduction with sodium citrate and stabilized with ammonia. The synthesized AgNPs have further been characterized by UV/Visible spectroscopy, Biophysical techniques like Dynamic light scattering (DLS) and Scanning Electron Microscopy (SEM). The average diameter of the prepared silver colloidal nanoparticles was about 52 nm. Absolute inhibitions (100%) were observed on treated with a 270 and 540 µg ml-1 concentration of AgNPs. The results from the study of the AgNPs antifungal effect are significant and suggest that the synthesized silver nanoparticles may have an advantage compared with conventional fungicides.

Regeneration of Spent Catalysts with Ozone

This study investigates the in-situ regeneration of deactivated Pt-Pd catalyst in a laboratory-scale catalysis reactor. Different regeneration conditions are tested and the activity and characteristics of regenerated catalysts are analyzed. Experimental results show that the conversion efficiencies of C3H6 by different regenerated Pt-Pd catalysts were significantly improved from 77%, 55% and 41% to 86%, 98% and 99%, respectively. The best regeneration conditions was 52ppm ozone, 500oC, and 10min. Regeneration temperature has more influences than ozone concentration and regeneration time. With the comparisons of characteristics of deactivated catalyst and regenerated catalyst, the major poison species (carbon, metals, chloride, and sulfate) on the spent catalysts can be effectively removed by ozone regeneration. 

Study on the Derivatization Process Using N-O-bis-(trimethylsilyl)-trifluoroacetamide,N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide, Trimethylsilydiazomethane for the Determination of Fecal Sterols by Gas Chromatography-Mass Spectrometry

Fecal sterol has been proposed as a chemical indicator of human fecal pollution even when fecal coliform populations have diminished due to water chlorination or toxic effects of industrial effluents. This paper describes an improved derivatization procedure for simultaneous determination of four fecal sterols including coprostanol, epicholestanol, cholesterol and cholestanol using gas chromatography-mass spectrometry (GC-MS), via optimization study on silylation procedures using N-O-bis (trimethylsilyl)-trifluoroacetamide (BSTFA), and N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA), which lead to the formation of trimethylsilyl (TMS) and tert-butyldimethylsilyl (TBS) derivatives, respectively. Two derivatization processes of injection-port derivatization and water bath derivatization (60 oC, 1h) were inspected and compared. Furthermore, the methylation procedure at 25 oC for 2h with trimethylsilydiazomethane (TMSD) for fecal sterols analysis was also studied. It was found that most of TMS derivatives demonstrated the highest sensitivities, followed by methylated derivatives. For BSTFA or MTBSTFA derivatization processes, the simple injection-port derivatization process could achieve the same efficiency as that in the tedious water bath derivatization procedure.

Influence of Paralleled Capacitance Effect in Well-defined Multiple Value Logical Level System with Active Load

Three similar negative differential resistance (NDR) profiles with both high peak to valley current density ratio (PVCDR) value and high peak current density (PCD) value in unity resonant tunneling electronic circuit (RTEC) element is developed in this paper. The PCD values and valley current density (VCD) values of the three NDR curves are all about 3.5 A and 0.8 A, respectively. All PV values of NDR curves are 0.40 V, 0.82 V, and 1.35 V, respectively. The VV values are 0.61 V, 1.07 V, and 1.69 V, respectively. All PVCDR values reach about 4.4 in three NDR curves. The PCD value of 3.5 A in triple PVCDR RTEC element is better than other resonant tunneling devices (RTD) elements. The high PVCDR value is concluded the lower VCD value about 0.8 A. The low VCD value is achieved by suitable selection of resistors in triple PVCDR RTEC element. The low PV value less than 1.35 V possesses low power dispersion in triple PVCDR RTEC element. The designed multiple value logical level (MVLL) system using triple PVCDR RTEC element provides equidistant logical level. The logical levels of MVLL system are about 0.2 V, 0.8 V, 1.5 V, and 2.2 V from low voltage to high voltage and then 2.2 V, 1.3 V, 0.8 V, and 0.2 V from high voltage back to low voltage in half cycle of sinusoid wave. The output level of four levels MVLL system is represented in 0.3 V, 1.1 V, 1.7 V, and 2.6 V, which satisfies the NMP condition of traditional two-bit system. The remarkable logical characteristic of improved MVLL system with paralleled capacitor are with four significant stable logical levels about 220 mV, 223 mV, 228 mV, and 230 mV. The stability and articulation of logical levels of improved MVLL system are outstanding. The average holding time of improved MVLL system is approximately 0.14 μs. The holding time of improved MVLL system is fourfold than of basic MVLL system. The function of additional capacitor in the improved MVLL system is successfully discovered.

Effective Class of Discreet Programing Problems

We consider herein a concise view of discreet programming models and methods. There has been conducted the models and methods analysis. On the basis of discreet programming models there has been elaborated and offered a new class of problems, i.e. block-symmetry models and methods of applied tasks statements and solutions.