Effect of Open-Ended Laboratory toward Learners Performance in Environmental Engineering Course: Case Study of Civil Engineering at Universiti Malaysia Sabah

Laboratory activities have produced benefits in student learning. With current drives of new technology resources and evolving era of education methods, renewal status of learning and teaching in laboratory methods are in progress, for both learners and the educators. To enhance learning outcomes in laboratory works particularly in engineering practices and testing, learning via handson by instruction may not sufficient. This paper describes and compares techniques and implementation of traditional (expository) with open-ended laboratory (problem-based) for two consecutive cohorts studying environmental laboratory course in civil engineering program. The transition of traditional to problem-based findings and effect were investigated in terms of course assessment student feedback survey, course outcome learning measurement and student performance grades. It was proved that students have demonstrated better performance in their grades and 12% increase in the course outcome (CO) in problem-based open-ended laboratory style than traditional method; although in perception, students has responded less favorable in their feedback.

A Multi-Criteria Evaluation Incorporating Linguistic Computing for Service Innovation Performance

The growing influence of service industries has prompted greater attention being paid to service operations management. However, service managers often have difficulty articulating the veritable effects of their service innovation. Especially, the performance evaluation process of service innovation problems generally involves uncertain and imprecise data. This paper presents a 2-tuple fuzzy linguistic computing approach to dealing with heterogeneous information and information loss problems while the processes of subjective evaluation integration. The proposed method based on group decision-making scenario to assist business managers in measuring performance of service innovation manipulates the heterogeneity integration processes and avoids the information loss effectively.

Agent-based Simulation for Blood Glucose Control in Diabetic Patients

This paper employs a new approach to regulate the blood glucose level of type I diabetic patient under an intensive insulin treatment. The closed-loop control scheme incorporates expert knowledge about treatment by using reinforcement learning theory to maintain the normoglycemic average of 80 mg/dl and the normal condition for free plasma insulin concentration in severe initial state. The insulin delivery rate is obtained off-line by using Qlearning algorithm, without requiring an explicit model of the environment dynamics. The implementation of the insulin delivery rate, therefore, requires simple function evaluation and minimal online computations. Controller performance is assessed in terms of its ability to reject the effect of meal disturbance and to overcome the variability in the glucose-insulin dynamics from patient to patient. Computer simulations are used to evaluate the effectiveness of the proposed technique and to show its superiority in controlling hyperglycemia over other existing algorithms

A Family of Entropies on Interval-valued Intuitionistic Fuzzy Sets and Their Applications in Multiple Attribute Decision Making

The entropy of intuitionistic fuzzy sets is used to indicate the degree of fuzziness of an interval-valued intuitionistic fuzzy set(IvIFS). In this paper, we deal with the entropies of IvIFS. Firstly, we propose a family of entropies on IvIFS with a parameter λ ∈ [0, 1], which generalize two entropy measures defined independently by Zhang and Wei, for IvIFS, and then we prove that the new entropy is an increasing function with respect to the parameter λ. Furthermore, a new multiple attribute decision making (MADM) method using entropy-based attribute weights is proposed to deal with the decision making situations where the alternatives on attributes are expressed by IvIFS and the attribute weights information is unknown. Finally, a numerical example is given to illustrate the applications of the proposed method.

Speaker Identification using Neural Networks

The speech signal conveys information about the identity of the speaker. The area of speaker identification is concerned with extracting the identity of the person speaking the utterance. As speech interaction with computers becomes more pervasive in activities such as the telephone, financial transactions and information retrieval from speech databases, the utility of automatically identifying a speaker is based solely on vocal characteristic. This paper emphasizes on text dependent speaker identification, which deals with detecting a particular speaker from a known population. The system prompts the user to provide speech utterance. System identifies the user by comparing the codebook of speech utterance with those of the stored in the database and lists, which contain the most likely speakers, could have given that speech utterance. The speech signal is recorded for N speakers further the features are extracted. Feature extraction is done by means of LPC coefficients, calculating AMDF, and DFT. The neural network is trained by applying these features as input parameters. The features are stored in templates for further comparison. The features for the speaker who has to be identified are extracted and compared with the stored templates using Back Propogation Algorithm. Here, the trained network corresponds to the output; the input is the extracted features of the speaker to be identified. The network does the weight adjustment and the best match is found to identify the speaker. The number of epochs required to get the target decides the network performance.

Face Recognition using Features Combination and a New Non-linear Kernel

To improve the classification rate of the face recognition, features combination and a novel non-linear kernel are proposed. The feature vector concatenates three different radius of local binary patterns and Gabor wavelet features. Gabor features are the mean, standard deviation and the skew of each scaling and orientation parameter. The aim of the new kernel is to incorporate the power of the kernel methods with the optimal balance between the features. To verify the effectiveness of the proposed method, numerous methods are tested by using four datasets, which are consisting of various emotions, orientations, configuration, expressions and lighting conditions. Empirical results show the superiority of the proposed technique when compared to other methods.

Survey of Impact of Production and Adoption of Nanocrops on Food Security

Perspective of food security in 21 century showed shortage of food that production is faced to vital problem. Food security strategy is applied longtime method to assess required food. Meanwhile, nanotechnology revolution changes the world face. Nanotechnology is adequate method utilize of its characteristics to decrease environmental problems and possible further access to food for small farmers. This article will show impact of production and adoption of nanocrops on food security. Population is researchers of agricultural research center of Esfahan province. The results of study show that there was a relationship between uses, conversion, distribution, and production of nanocrops, operative human resources, operative circumstance, and constrains of usage of nanocrops and food security. Multivariate regression analysis by enter model shows that operative circumstance, use, production and constrains of usage of nanocrops had positive impact on food security and they determine in four steps 20 percent of it.

Influence of the Entropic Parameter on the Flow Geometry and Morphology

The necessity of updating the numerical models inputs, because of geometrical and resistive variations in rivers subject to solid transport phenomena, requires detailed control and monitoring activities. The human employment and financial resources of these activities moves the research towards the development of expeditive methodologies, able to evaluate the outflows through the measurement of more easily acquirable sizes. Recent studies highlighted the dependence of the entropic parameter on the kinematical and geometrical flow conditions. They showed a meaningful variability according to the section shape, dimension and slope. Such dependences, even if not yet well defined, could reduce the difficulties during the field activities, and also the data elaboration time. On the basis of such evidences, the relationships between the entropic parameter and the geometrical and resistive sizes, obtained through a large and detailed laboratory experience on steady free surface flows in conditions of macro and intermediate homogeneous roughness, are analyzed and discussed.

Validation and Selection between Machine Learning Technique and Traditional Methods to Reduce Bullwhip Effects: a Data Mining Approach

The aim of this paper is to present a methodology in three steps to forecast supply chain demand. In first step, various data mining techniques are applied in order to prepare data for entering into forecasting models. In second step, the modeling step, an artificial neural network and support vector machine is presented after defining Mean Absolute Percentage Error index for measuring error. The structure of artificial neural network is selected based on previous researchers' results and in this article the accuracy of network is increased by using sensitivity analysis. The best forecast for classical forecasting methods (Moving Average, Exponential Smoothing, and Exponential Smoothing with Trend) is resulted based on prepared data and this forecast is compared with result of support vector machine and proposed artificial neural network. The results show that artificial neural network can forecast more precisely in comparison with other methods. Finally, forecasting methods' stability is analyzed by using raw data and even the effectiveness of clustering analysis is measured.

Turbulent Mixing and its Effects on Thermal Fatigue in Nuclear Reactors

The turbulent mixing of coolant streams of different temperature and density can cause severe temperature fluctuations in piping systems in nuclear reactors. In certain periodic contraction cycles these conditions lead to thermal fatigue. The resulting aging effect prompts investigation in how the mixing of flows over a sharp temperature/density interface evolves. To study the fundamental turbulent mixing phenomena in the presence of density gradients, isokinetic (shear-free) mixing experiments are performed in a square channel with Reynolds numbers ranging from 2-500 to 60-000. Sucrose is used to create the density difference. A Wire Mesh Sensor (WMS) is used to determine the concentration map of the flow in the cross section. The mean interface width as a function of velocity, density difference and distance from the mixing point are analyzed based on traditional methods chosen for the purposes of atmospheric/oceanic stratification analyses. A definition of the mixing layer thickness more appropriate to thermal fatigue and based on mixedness is devised. This definition shows that the thermal fatigue risk assessed using simple mixing layer growth can be misleading and why an approach that separates the effects of large scale (turbulent) and small scale (molecular) mixing is necessary.

Applications of Trigonometic Measures of Fuzzy Entropy to Geometry

In the literature of fuzzy measures, there exist many well known parametric and non-parametric measures, each with its own merits and limitations. But our main emphasis is on applications of these measures to a variety of disciplines. To extend the scope of applications of these fuzzy measures to geometry, we need some special fuzzy measures. In this communication, we have introduced two new fuzzy measures involving trigonometric functions and simultaneously provided their applications to obtain the basic results already existing in the literature of geometry.

A Numerical Study on Heat Transfer in Laminar Pulsed Slot Jets Impinging on a Surface

Numerical simulations are performed for laminar continuous and pulsed jets impinging on a surface in order to investigate the effects of pulsing frequency on the heat transfer characteristics. The time-averaged Nusselt number of pulsed jets is larger in the impinging jet region as compared to the continuous jet, while it is smaller in the outer wall jet region. At the stagnation point, the mean and RMS Nusselt numbers become larger and smaller, respectively, as the pulsing frequency increases. Unsteady behaviors of vortical fluid motions and temperature field are also investigated to understand the underlying mechanisms of heat transfer enhancement.

Impact of GCSC on Measured Impedance by Distance Relay in the Presence of Single Phase to Earth Fault

This paper presents the impact study of GTO Controlled Series Capacitor (GCSC) parameters on measured impedance (Zseen) by MHO distance relays for single transmission line high voltage 220 kV in the presence of single phase to earth fault with fault resistance (RF). The study deals with a 220 kV single electrical transmission line of Eastern Algerian transmission networks at Group Sonelgaz (Algerian Company of Electrical and Gas) compensated by series Flexible AC Transmission System (FACTS) i.e. GCSC connected at midpoint of the transmission line. The transmitted active and reactive powers are controlled by three GCSC-s. The effects of maximum reactive power injected as well as injected maximum voltage by GCSC on distance relays measured impedance is treated. The simulations results investigate the effects of GCSC injected parameters: variable reactance (XGCSC), variable voltage (VGCSC) and reactive power injected (QGCSC) on measured resistance and reactance in the presence of earth fault with resistance fault varied between 5 to 50 Ω for three cases study.

Performance of Histogram-Based Skin Colour Segmentation for Arms Detection in Human Motion Analysis Application

Arms detection is one of the fundamental problems in human motion analysis application. The arms are considered as the most challenging body part to be detected since its pose and speed varies in image sequences. Moreover, the arms are usually occluded with other body parts such as the head and torso. In this paper, histogram-based skin colour segmentation is proposed to detect the arms in image sequences. Six different colour spaces namely RGB, rgb, HSI, TSL, SCT and CIELAB are evaluated to determine the best colour space for this segmentation procedure. The evaluation is divided into three categories, which are single colour component, colour without luminance and colour with luminance. The performance is measured using True Positive (TP) and True Negative (TN) on 250 images with manual ground truth. The best colour is selected based on the highest TN value followed by the highest TP value.

Study on Ultrasonic Vibration Effects on Grinding Process of Alumina Ceramic (Al2O3)

Nowadays, engineering ceramics have significant applications in different industries such as; automotive, aerospace, electrical, electronics and even martial industries due to their attractive physical and mechanical properties like very high hardness and strength at elevated temperatures, chemical stability, low friction and high wear resistance. However, these interesting properties plus low heat conductivity make their machining processes too hard, costly and time consuming. Many attempts have been made in order to make the grinding process of engineering ceramics easier and many scientists have tried to find proper techniques to economize ceramics' machining processes. This paper proposes a new diamond plunge grinding technique using ultrasonic vibration for grinding Alumina ceramic (Al2O3). For this purpose, a set of laboratory equipments have been designed and simulated using Finite Element Method (FEM) and constructed in order to be used in various measurements. The results obtained have been compared with the conventional plunge grinding process without ultrasonic vibration and indicated that the surface roughness and fracture strength improved and the grinding forces decreased.

A Perceptually Optimized Foveation Based Wavelet Embedded Zero Tree Image Coding

In this paper, we propose a Perceptually Optimized Foveation based Embedded ZeroTree Image Coder (POEFIC) that introduces a perceptual weighting to wavelet coefficients prior to control SPIHT encoding algorithm in order to reach a targeted bit rate with a perceptual quality improvement with respect to a given bit rate a fixation point which determines the region of interest ROI. The paper also, introduces a new objective quality metric based on a Psychovisual model that integrates the properties of the HVS that plays an important role in our POEFIC quality assessment. Our POEFIC coder is based on a vision model that incorporates various masking effects of human visual system HVS perception. Thus, our coder weights the wavelet coefficients based on that model and attempts to increase the perceptual quality for a given bit rate and observation distance. The perceptual weights for all wavelet subbands are computed based on 1) foveation masking to remove or reduce considerable high frequencies from peripheral regions 2) luminance and Contrast masking, 3) the contrast sensitivity function CSF to achieve the perceptual decomposition weighting. The new perceptually optimized codec has the same complexity as the original SPIHT techniques. However, the experiments results show that our coder demonstrates very good performance in terms of quality measurement.

Microneedles-Mediated Transdermal Delivery

The objective of the present study was to evaluate the potential of hollow microneedles for enhancing the transdermal delivery of Bovine Serum Albumin (MW~66,000 Da)-Fluorescein Isothiocyanate (BSA-FITC) conjugate, a hydrophilic large molecular compound. Moreover, the effect of different formulations was evaluated. The series of binary mixtures composed of propylene glycol (PG) and pH 7.4 phosphate buffer solution (PBS) was prepared and used as a medium for BSA-FITC. The results showed that there was no permeation of BSA-FITC solution across the neonatal porcine skin without using hollow microneedles, whereas the cumulative amount of BSA-FITC released at 8 h through the neonatal porcine skin was about 60-70% when using hollow microneedles. Furthermore, the results demonstrated that the higher volume of PG in binary mixtures injected, the lower cumulative amount of BSA-FITC released and release rate of BSA-FITC from skin. These release profiles of BSA-FITC in binary mixtures were expressed by Fick-s law of diffusion. These results suggest the utilization of hollow microneedle to enhance transdermal delivery of protein and provide useful information for designing an effective hollow microneedle system.

PIELG: A Protein Interaction Extraction Systemusing a Link Grammar Parser from Biomedical Abstracts

Due to the ever growing amount of publications about protein-protein interactions, information extraction from text is increasingly recognized as one of crucial technologies in bioinformatics. This paper presents a Protein Interaction Extraction System using a Link Grammar Parser from biomedical abstracts (PIELG). PIELG uses linkage given by the Link Grammar Parser to start a case based analysis of contents of various syntactic roles as well as their linguistically significant and meaningful combinations. The system uses phrasal-prepositional verbs patterns to overcome preposition combinations problems. The recall and precision are 74.4% and 62.65%, respectively. Experimental evaluations with two other state-of-the-art extraction systems indicate that PIELG system achieves better performance. For further evaluation, the system is augmented with a graphical package (Cytoscape) for extracting protein interaction information from sequence databases. The result shows that the performance is remarkably promising.

Continuity Planning in Supply Chain Networks: Degrees of Freedom and Application in the Risk Management Process

Supply chain networks are frequently hit by unplanned events which lead to disruptions and cause operational and financial consequences. It is neither possible to avoid disruption risk entirely, nor are network members able to prepare for every possible disruptive event. Therefore a continuity planning should be set up which supports effective operational responses in supply chain networks in times of emergencies. In this research network related degrees of freedom which determine the options for responsive actions are derived from interview data. The findings are further embedded into a common risk management process. The paper provides support for researchers and practitioners to identify the network related options for responsive actions and to determine the need for improving the reaction capabilities.

Some Solid Transportation Models with Crisp and Rough Costs

In this paper, some practical solid transportation models are formulated considering per trip capacity of each type of conveyances with crisp and rough unit transportation costs. This is applicable for the system in which full vehicles, e.g. trucks, rail coaches are to be booked for transportation of products so that transportation cost is determined on the full of the conveyances. The models with unit transportation costs as rough variables are transformed into deterministic forms using rough chance constrained programming with the help of trust measure. Numerical examples are provided to illustrate the proposed models in crisp environment as well as with unit transportation costs as rough variables.