Continuous and Discontinuous Shock Absorber Control through Skyhook Strategy in Semi-Active Suspension System (4DOF Model)

Active vibration isolation systems are less commonly used than passive systems due to their associated cost and power requirements. In principle, semi-active isolation systems can deliver the versatility, adaptability and higher performance of fully active systems for a fraction of the power consumption. Various semi-active control algorithms have been suggested in the past. This paper studies the 4DOF model of semi-active suspension performance controlled by on–off and continuous skyhook damping control strategy. The frequency and transient responses of model are evaluated in terms of body acceleration, roll angle and tire deflection and are compared with that of a passive damper. The results show that the semi-active system controlled by skyhook strategy always provides better isolation than a conventional passively damped system except at tire natural frequencies.

Quantum Dot Cellular Automata Based Effective Design of Combinational and Sequential Logical Structures

The use of Quantum dots is a promising emerging Technology for implementing digital system at the nano level. It is effecient for attractive features such as faster speed , smaller size and low power consumption than transistor technology. In this paper, various Combinational and sequential logical structures - HALF ADDER, SR Latch and Flip-Flop, D Flip-Flop preceding NAND, NOR, XOR,XNOR are discussed based on QCA design, with comparatively less number of cells and area. By applying these layouts, the hardware requirements for a QCA design can be reduced. These structures are designed and simulated using QCA Designer Tool. By taking full advantage of the unique features of this technology, we are able to create complete circuits on a single layer of QCA. Such Devices are expected to function with ultra low power Consumption and very high speeds.

Requirements Driven Multiple View Paradigm for Developing Security Architecture

This paper describes a paradigmatic approach to develop architecture of secure systems by describing the requirements from four different points of view: that of the owner, the administrator, the user, and the network. Deriving requirements and developing architecture implies the joint elicitation and describing the problem and the structure of the solution. The view points proposed in this paper are those we consider as requirements towards their contributions as major parties in the design, implementation, usage and maintenance of secure systems. The dramatic growth of the technology of Internet and the applications deployed in World Wide Web have lead to the situation where the security has become a very important concern in the development of secure systems. Many security approaches are currently being used in organizations. In spite of the widespread use of many different security solutions, the security remains a problem. It is argued that the approach that is described in this paper for the development of secure architecture is practical by all means. The models representing these multiple points of view are termed the requirements model (views of owner and administrator) and the operations model (views of user and network). In this paper, this multiple view paradigm is explained by first describing the specific requirements and or characteristics of secure systems (particularly in the domain of networks) and the secure architecture / system development methodology.

A Linear Use Case Based Software Cost Estimation Model

Software development is moving towards agility with use cases and scenarios being used for requirements stories. Estimates of software costs are becoming even more important than before as effects of delays is much larger in successive short releases context of agile development. Thus, this paper reports on the development of new linear use case based software cost estimation model applicable in the very early stages of software development being based on simple metric. Evaluation showed that accuracy of estimates varies between 43% and 55% of actual effort of historical test projects. These results outperformed those of wellknown models when applied in the same context. Further work is being carried out to improve the performance of the proposed model when considering the effect of non-functional requirements.

Managing Handheld Devices in Ad-Hoc Collaborative Computing Environments

The noticeable advance in the area of computer technology has paved the way for the invention of powerful mobile devices. However, limited storage, short battery life, and relatively low computational power define the major problems of such devices. Due to the ever increasing computational requirements, such devices may fail to process needed tasks under certain constraints. One of the proposed solutions to this drawback is the introduction of Collaborative Computing, a new concept dealing with the distribution of computational tasks amongst several handhelds. This paper introduces the basics of Collaborative Computing, and proposes a new protocol that aims at managing and optimizing computing tasks in Ad-Hoc Collaborative Computing Environments.

Personalisation of SOA Registry Query Results: Implementation, Performance Analysis and Scalability Evaluation

Service discovery is a very important component of Service Oriented Architectures (SOA). This paper presents two alternative approaches to customise the query results of private service registry such as Universal Description, Discovery and Integration (UDDI). The customisation is performed based on some pre-defined and/or real-time changing parameters. This work identifies the requirements, designs and additional mechanisms that must be applied to UDDI in order to support this customisation capability. We also detail the implements of the approaches and examine its performance and scalability. Based on our experimental results, we conclude that both approaches can be used to customise registry query results, but by storing personalization parameters in external resource will yield better performance and but less scalable when size of query results increases. We believe these approaches when combined with semantics enabled service registry will enhance the service discovery methods within a private UDDI registry environment.

Analysis of SEIG for a Wind Pumping Plant Using Induction Motor

In contrast to conventional generators, self-excited induction generators are found to be most suitable machines for wind energy conversion in remote and windy areas due to many advantages over grid connected machines. This papers presents a Self-Excited Induction Generator (SEIG) driven by wind turbine and supplying an induction motor which is coupled to a centrifugal pump. A method to describe the steady state performance based on nodal analysis is presented. Therefore the advanced knowledge of the minimum excitation capacitor value is required. The effects of variation of excitation capacitance on system and rotor speed under different loading conditions have been analyzed and considered to optimize induction motor pump performances.

Material Defects Identification in Metal Ceramic Fixed Partial Dentures by En-Face Polarization Sensitive Optical Coherence Tomography

The fixed partial dentures are mainly used in the frontal part of the dental arch because of their great esthetics. There are several factors that are associated with the stress state created in ceramic restorations, including: thickness of ceramic layers, mechanical properties of the materials, elastic modulus of the supporting substrate material, direction, magnitude and frequency of applied load, size and location of occlusal contact areas, residual stresses induced by processing or pores, restoration-cement interfacial defects and environmental defects. The purpose of this study is to evaluate the capability of Polarization Sensitive Optical Coherence Tomography (PSOCT) in detection and analysis of possible material defects in metal-ceramic and integral ceramic fixed partial dentures. As a conclusion, it is important to have a non invasive method to investigate fixed partial prostheses before their insertion in the oral cavity in order to satisfy the high stress requirements and the esthetic function.

A New Face Detection Technique using 2D DCT and Self Organizing Feature Map

This paper presents a new technique for detection of human faces within color images. The approach relies on image segmentation based on skin color, features extracted from the two-dimensional discrete cosine transform (DCT), and self-organizing maps (SOM). After candidate skin regions are extracted, feature vectors are constructed using DCT coefficients computed from those regions. A supervised SOM training session is used to cluster feature vectors into groups, and to assign “face" or “non-face" labels to those clusters. Evaluation was performed using a new image database of 286 images, containing 1027 faces. After training, our detection technique achieved a detection rate of 77.94% during subsequent tests, with a false positive rate of 5.14%. To our knowledge, the proposed technique is the first to combine DCT-based feature extraction with a SOM for detecting human faces within color images. It is also one of a few attempts to combine a feature-invariant approach, such as color-based skin segmentation, together with appearance-based face detection. The main advantage of the new technique is its low computational requirements, in terms of both processing speed and memory utilization.

Absence of Leave and Job Morality in the ICU

Leave of absence is important in maintaining a good status of human resource quality. Allowing the employees temporarily free from the routine assignments can vitalize the workers- morality and productivity. This is particularly critical to secure a satisfactory service quality for healthcare professionals of which were typically featured with labor intensive and complicated works to perform. As one of the veteran hospitals that were found and operated by the Veteran Department of Taiwan, the nursing staff of the case hospital was squeezed to an extreme minimum level under the pressure of a tight budgeting. Leave of absence on schedule became extremely difficult, especially for the intensive care units (ICU), in which required close monitoring over the cared patients, and that had more easily driven the ICU nurses nervous. Even worse, the deferred leaves were more than 10 days at any time in the ICU because of a fluctuating occupancy. As a result, these had brought a bad setback to this particular nursing team, and consequently defeated the job performance and service quality. To solve this problem and accordingly to strengthen their morality, a project team was organized across different departments specific for this. Sufficient information regarding jobs and positions requirements, labor resources, and actual working hours in detail were collected and analyzed in the team meetings. Several alternatives were finalized. These included job rotating, job combination, leave on impromptu and cross-departmental redeployment. Consequently, the deferred leave days sharply reduced 70% to a level of 3 or less days. This improvement had not only provided good shelter for the ICU nurses that improved their job performance and patient safety but also encouraged the nurses active participating of a project and learned the skills of solving problems with colleagues.

Contamination of Organochlorine Pesticides in Nest Soil, Egg, and Blood of the Snail-eating Turtle (Malayemys macrocephala) from the Chao Phraya River Basin, Thailand

Organochlorine pesticides (OCPs) are known to be persistent and bioaccumulative toxicants that may cause reproductive impairments in wildlife as well as human. The current study uses the snail-eating turtle Malayemys macrocephala, a long-lived animal commonly distribute in rice field habitat in central part of Thailand, as a sentinel to monitor OCP contamination in environment. The nest soil, complete clutch of eggs, and blood of the turtle were collected from agricultural areas in the Chao Phraya River Basin, Thailand during the nesting season of 2007-2008. The novel methods for tissue extraction by an accelerated solvent extractor (ASE, for egg) and liquid-liquid extraction (for blood) have been developed. The nineteen OCP residues were analyzed by gas chromatography with micro-electron captured detector (GC-μECD). The validated methods have met requirements of the AOAC standard. The results indicated that significant amounts of OCPs are still contaminated in nest soil and eggs of the turtle even though the OCPs had been banned in this area for many years. This suggested the potential risk to health of wildlife as well as human in the area.

A Novel Low Power Very Low Voltage High Performance Current Mirror

In this paper a novel high output impedance, low input impedance, wide bandwidth, very simple current mirror with input and output voltage requirements less than that of a simple current mirror is presented. These features are achieved with very simple structure avoiding extra large node impedances to ensure high bandwidth operation. The circuit's principle of operation is discussed and compared to simple and low voltage cascode (LVC) current mirrors. Such outstanding features of this current mirror as high output impedance ~384K, low input impedance~6.4, wide bandwidth~178MHz, low input voltage ~ 362mV, low output voltage ~ 38mV and low current transfer error ~4% (all at 50μA) makes it an outstanding choice for high performance applications. Simulation results in BSIM 0.35μm CMOS technology with HSPICE are given in comparison with simple, and LVC current mirrors to verify and validate the performance of the proposed current mirror.

Novel Trends in Manufacturing Systems with View on Implementation Possibilities of Intelligent Automation

The current trend of increasing quality and demands of the final product is affected by time analysis of the entire manufacturing process. The primary requirement of manufacturing is to produce as many products as soon as possible, at the lowest possible cost, but of course with the highest quality. Such requirements may be satisfied only if all the elements entering and affecting the production cycle are in a fully functional condition. These elements consist of sensory equipment and intelligent control elements that are essential for building intelligent manufacturing systems. The intelligent manufacturing paradigm includes a new approach to production system structure design. Intelligent behaviors are based on the monitoring of important parameters of system and its environment. The flexible reaction to changes. The realization and utilization of this design paradigm as an "intelligent manufacturing system" enables the flexible system reaction to production requirement as soon as environmental changes too. Results of these flexible reactions are a smaller layout space, be decreasing of production and investment costs and be increasing of productivity. Intelligent manufacturing system itself should be a system that can flexibly respond to changes in entering and exiting the process in interaction with the surroundings.

Addressing Scalability Issues of Named Entity Recognition Using Multi-Class Support Vector Machines

This paper explores the scalability issues associated with solving the Named Entity Recognition (NER) problem using Support Vector Machines (SVM) and high-dimensional features. The performance results of a set of experiments conducted using binary and multi-class SVM with increasing training data sizes are examined. The NER domain chosen for these experiments is the biomedical publications domain, especially selected due to its importance and inherent challenges. A simple machine learning approach is used that eliminates prior language knowledge such as part-of-speech or noun phrase tagging thereby allowing for its applicability across languages. No domain-specific knowledge is included. The accuracy measures achieved are comparable to those obtained using more complex approaches, which constitutes a motivation to investigate ways to improve the scalability of multiclass SVM in order to make the solution more practical and useable. Improving training time of multi-class SVM would make support vector machines a more viable and practical machine learning solution for real-world problems with large datasets. An initial prototype results in great improvement of the training time at the expense of memory requirements.

Research of Dynamic Location Referencing Method Based On Intersection and Link Partition

Dynamic location referencing method is an important technology to shield map differences. These method references objects of the road network by utilizing condensed selection of its real-world geographic properties stored in a digital map database, which overcomes the defections existing in pre-coded location referencing methods. The high attributes completeness requirements and complicated reference point selection algorithm are the main problems of recent researches. Therefore, a dynamic location referencing algorithm combining intersection points selected at the extremities compulsively and road link points selected according to link partition principle was proposed. An experimental system based on this theory was implemented. The tests using Beijing digital map database showed satisfied results and thus verified the feasibility and practicability of this method.

GSM Position Tracking using a Kalman Filter

GSM has undoubtedly become the most widespread cellular technology and has established itself as one of the most promising technology in wireless communication. The next generation of mobile telephones had also become more powerful and innovative in a way that new services related to the user-s location will arise. Other than the 911 requirements for emergency location initiated by the Federal Communication Commission (FCC) of the United States, GSM positioning can be highly integrated in cellular communication technology for commercial use. However, GSM positioning is facing many challenges. Issues like accuracy, availability, reliability and suitable cost render the development and implementation of GSM positioning a challenging task. In this paper, we investigate the optimal mobile position tracking means. We employ an innovative scheme by integrating the Kalman filter in the localization process especially that it has great tracking characteristics. When tracking in two dimensions, Kalman filter is very powerful due to its reliable performance as it supports estimation of past, present, and future states, even when performing in unknown environments. We show that enhanced position tracking results is achieved when implementing the Kalman filter for GSM tracking.

Post-Compression Consideration in Video Watermarking for Wireless Communication

A simple but effective digital watermarking scheme utilizing a context adaptive variable length coding (CAVLC) method is presented for wireless communication system. In the proposed approach, the watermark bits are embedded in the final non-zero quantized coefficient of each DCT block, thereby yielding a potential reduction in the length of the coded block. As a result, the watermarking scheme not only provides the means to check the authenticity and integrity of the video stream, but also improves the compression ratio and therefore reduces both the transmission time and the storage space requirements of the coded video sequence. The results confirm that the proposed scheme enables the detection of malicious tampering attacks and reduces the size of the coded H.264 file. Therefore, the current study is feasible to apply in the video applications of wireless communication such as 3G system

An Approach to Improvement of Information Integrity in Key Areas of Portfolio Management

At a time of growing market turbulence and a strong shifts towards increasingly complex risk models and more stringent audit requirements, it is more critical than ever to maintain the highest quality of financial and credit information. IFC implemented an approach that helps increase data integrity and quality significantly. This approach is called “Screening". Screening is based on linking information from different sources to identify potential inconsistencies in key financial and credit data. That, in turn, can help to ease the trials of portfolio supervision, and improve overall company global reporting and assessment systems. IFC experience showed that when used regularly, Screening led to improved information.

Agile Index: Automotive Supply Chain

The supply chains (SCs) have to appeal to new management paradigms to improve their ability to respond rapidly and cost effectively to unpredictable changes in markets and increasing levels of environmental turbulence, both in terms of volume and variety. In this highly demanded context, the Agile paradigm provides the capabilities to SC quickly adapt to changes in the market requirements. The purpose of this paper is to suggest an Agile Index to assess the agility of the automotive companies and corresponding SCs. The proposed integrated assessment model incorporates Agile practices weighted according to their importance to the automotive SC competitiveness and obtained from the Delphi technique.

An Energy Integration Approach on UHDE Ammonia Process

In this paper, the energy performance of a selected UHDE Ammonia plant is optimized by conducting heat integration through waste heat recovery and the synthesis of a heat exchange network (HEN). Minimum hot and cold utility requirements were estimated through IChemE spreadsheet. Supporting simulation was carried out using HYSYS software. The results showed that there is no need for heating utility while the required cold utility was found to be around 268,714 kW. Hence a threshold pinch case was faced. Then, the hot and cold streams were matched appropriately. Also, waste heat recovered resulted with savings in HP and LP steams of approximately 51.0% and 99.6%, respectively. An economic analysis on proposed HEN showed very attractive overall payback period not exceeding 3 years. In general, a net saving approaching 35% was achieved in implementing heat optimization of current studied UHDE Ammonia process.