Development of Thermal Model by Performance Verification of Heat Pipe Subsystem for Electronic Cooling under Space Environment

Heat pipes are used to control the thermal problem for electronic cooling. It is especially difficult to dissipate heat to a heat sink in an environment in space compared to earth. For solving this problem, in this study, the Poiseuille (Po) number, which is the main measure of the performance of a heat pipe, is studied by CFD; then, the heat pipe performance is verified with experimental results. A heat pipe is then fabricated for a spatial environment, and an in-house code is developed. Further, a heat pipe subsystem, which consists of a heat pipe, MLI (Multi Layer Insulator), SSM (Second Surface Mirror), and radiator, is tested and correlated with the TMM (Thermal Mathematical Model) through a commercial code. The correlation results satisfy the 3K requirement, and the generated thermal model is verified for application to a spatial environment.

High-Resolution 12-Bit Segmented Capacitor DAC in Successive Approximation ADC

This paper study the segmented split capacitor Digital-to-Analog Converter (DAC) implemented in a differentialtype 12-bit Successive Approximation Analog-to-Digital Converter (SA-ADC). The series capacitance split array method employed as it reduced the total area of the capacitors required for high resolution DACs. A 12-bit regular binary array structure requires 2049 unit capacitors (Cs) while the split array needs 127 unit Cs. These results in the reduction of the total capacitance and power consumption of the series split array architectures as to regular binary-weighted structures. The paper will show the 12-bit DAC series split capacitor with 4-bit thermometer coded DAC architectures as well as the simulation and measured results.

Remote-Sensing Sunspot Images to Obtain the Sunspot Roads

A combination of image fusion and quad tree decomposition method is used for detecting the sunspot trajectories in each month and computation of the latitudes of these trajectories in each solar hemisphere. Daily solar images taken with SOHO satellite are fused for each month and the result of fused image is decomposed with Quad Tree decomposition method in order to classifying the sunspot trajectories and then to achieve the precise information about latitudes of sunspot trajectories. Also with fusion we deduce some physical remarkable conclusions about sun magnetic fields behavior. Using quad tree decomposition we give information about the region on sun surface and the space angle that tremendous flares and hot plasma gases permeate interplanetary space and attack to satellites and human technical systems. Here sunspot images in June, July and August 2001 are used for studying and give a method to compute the latitude of sunspot trajectories in each month with sunspot images.

FHOJ: A New Java Benchmark Framework

There are some existing Java benchmarks, application benchmarks as well as micro benchmarks or mixture both of them,such as: Java Grande, Spec98, CaffeMark, HBech, etc. But none of them deal with behaviors of multi tasks operating systems. As a result, the achieved outputs are not satisfied for performance evaluation engineers. Behaviors of multi tasks operating systems are based on a schedule management which is employed in these systems. Different processes can have different priority to share the same resources. The time is measured by estimating from applications started to it is finished does not reflect the real time value which the system need for running those programs. New approach to this problem should be done. Having said that, in this paper we present a new Java benchmark, named FHOJ benchmark, which directly deals with multi tasks behaviors of a system. Our study shows that in some cases, results from FHOJ benchmark are far more reliable in comparison with some existing Java benchmarks.

Neural Network based Texture Analysis of Liver Tumor from Computed Tomography Images

Advances in clinical medical imaging have brought about the routine production of vast numbers of medical images that need to be analyzed. As a result an enormous amount of computer vision research effort has been targeted at achieving automated medical image analysis. Computed Tomography (CT) is highly accurate for diagnosing liver tumors. This study aimed to evaluate the potential role of the wavelet and the neural network in the differential diagnosis of liver tumors in CT images. The tumors considered in this study are hepatocellular carcinoma, cholangio carcinoma, hemangeoma and hepatoadenoma. Each suspicious tumor region was automatically extracted from the CT abdominal images and the textural information obtained was used to train the Probabilistic Neural Network (PNN) to classify the tumors. Results obtained were evaluated with the help of radiologists. The system differentiates the tumor with relatively high accuracy and is therefore clinically useful.

Challenges of e-Government Services Adoption in Saudi Arabia from an e-Ready Citizen Perspective

More and more governments around the world are introducing e-government as a means of reducing costs, improving services, saving time and increasing effectiveness and efficiency in the public sector Therefore e-government has been identified as one of the top priorities for Saudi government and all its agencies. However, the adoption of e-government is facing many challenges and barriers such as technological, cultural, organizational, and social issues which must be considered and treated carefully by any government contemplating its adoption. This paper reports on a pilot study amongst online (e-ready) citizens to identify the challenges and barriers that affect the adoption of e-government services especially from their perspective in Saudi society. Based on the analysis of data collected from an online survey the researcher was able to identify some of the important barriers and challenges from the e-ready citizen perspective. As a result, this study has generated a list of possible strategies to move towards successful adoption of egovernment services in Saudi Arabia.

Separation of CO2 Using MFI-Alumina Nanocomposite Hollow Fiber Ion-Exchanged with Alkali Metal Cation

Cs-type nanocomposite zeolite membrane was successfully synthesized on an alumina ceramic hollow fibre with a mean outer diameter of 1.7 mm; cesium cationic exchange test was carried out inside test module with mean wall thickness of 230 μm and an average crossing pore size smaller than 0.2 μm. Separation factor of n-butane/H2 obtained indicate that a relatively high quality closed to 20. Maxwell-Stefan modeling provides an equivalent thickness lower than 1 µm. To compare the difference an application to CO2/N2 separation has been achieved, reaching separation factors close to (4,18) before and after cation exchange on H-zeolite membrane formed within the pores of a ceramic alumina substrate.

Prediction of Bath Temperature Using Neural Networks

In this work, we consider an application of neural networks in LD converter. Application of this approach assumes a reliable prediction of steel temperature and reduces a reblow ratio in steel work. It has been applied a conventional model to charge calculation, the obtained results by this technique are not always good, this is due to the process complexity. Difficulties are mainly generated by the noisy measurement and the process non linearities. Artificial Neural Networks (ANNs) have become a powerful tool for these complex applications. It is used a backpropagation algorithm to learn the neural nets. (ANNs) is used to predict the steel bath temperature in oxygen converter process for the end condition. This model has 11 inputs process variables and one output. The model was tested in steel work, the obtained results by neural approach are better than the conventional model.

On Bounds For The Zeros of Univariate Polynomial

Problems on algebraical polynomials appear in many fields of mathematics and computer science. Especially the task of determining the roots of polynomials has been frequently investigated.Nonetheless, the task of locating the zeros of complex polynomials is still challenging. In this paper we deal with the location of zeros of univariate complex polynomials. We prove some novel upper bounds for the moduli of the zeros of complex polynomials. That means, we provide disks in the complex plane where all zeros of a complex polynomial are situated. Such bounds are extremely useful for obtaining a priori assertations regarding the location of zeros of polynomials. Based on the proven bounds and a test set of polynomials, we present an experimental study to examine which bound is optimal.

Yield Prediction Using Support Vectors Based Under-Sampling in Semiconductor Process

It is important to predict yield in semiconductor test process in order to increase yield. In this study, yield prediction means finding out defective die, wafer or lot effectively. Semiconductor test process consists of some test steps and each test includes various test items. In other world, test data has a big and complicated characteristic. It also is disproportionably distributed as the number of data belonging to FAIL class is extremely low. For yield prediction, general data mining techniques have a limitation without any data preprocessing due to eigen properties of test data. Therefore, this study proposes an under-sampling method using support vector machine (SVM) to eliminate an imbalanced characteristic. For evaluating a performance, randomly under-sampling method is compared with the proposed method using actual semiconductor test data. As a result, sampling method using SVM is effective in generating robust model for yield prediction.

Sustainable Development and Kish Island Environment Protection, using Wind Energy

Kish Islands in South of Iran is located in coastal water near Hormozgan Province. Based on the wind 3-hour statistics in Kish station, the mean annual windspeed in this Island is 8.6 knot (4.3 m/s). The maximum windspeed recorded in this stations 47 knot (23.5 m/s). In 45.7 percent of recorded times, windspeed has been Zero or less than 8 knot which is not suitable to use the wind energy. But in 54.3 percent of recorded times, windspeed has been more than 8 knot and suitable to use wind energy to run turbines. In 40.2 percent of recorded times, windspeed has been between 8 to 16 knot, in 13 percent of times between 16 to 24 knot and in 1 percent of times it has been higher than 24 knot. In this station, the direction of winds higher than 8 is west and wind direction in Kish station is stable in most times of the year.With regard to high – speed and stable direction winds during the year and also shallow coasts near this is land, it is possible to build offshore wind farms near Kish Island and utilize wind energy produce the electricity required in this Island during most of the year.

Application of Multi-Dimensional Principal Component Analysis to Medical Data

Multi-dimensional principal component analysis (PCA) is the extension of the PCA, which is used widely as the dimensionality reduction technique in multivariate data analysis, to handle multi-dimensional data. To calculate the PCA the singular value decomposition (SVD) is commonly employed by the reason of its numerical stability. The multi-dimensional PCA can be calculated by using the higher-order SVD (HOSVD), which is proposed by Lathauwer et al., similarly with the case of ordinary PCA. In this paper, we apply the multi-dimensional PCA to the multi-dimensional medical data including the functional independence measure (FIM) score, and describe the results of experimental analysis.

Analyzing and Comparing the Architectural Specifications and the Urban Role of Scientific– Technological Parks in Iran and the World

The issue of scientific – technological parks has been proposed in several countries of the world especially in western countries since a few decades ago and its efficiency is under examination. In our county Iran, some scientific – technological parks have been established or are being established. This design would evaluate the urban role and method of architecture of these parks in order to criticize its efficiency and offer some suggestions, as much as possible to improve its building methods in Iran. The main problem of this design is that how much these parks in Iran do meet the international measurements. So for this reason, one scientific park in Iran and one from western countries would be studied and compared with each other.

Simulation Modeling of Fire Station Locations under Traffic Obstacles

Facility location problem involves locating a facility to optimize some performance measures. Location of a public facility to serve the community, such as a fire station, significantly affects its service quality. Main objective in locating a fire station is to minimize the response time, which is the time duration between receiving a call and reaching the place of incident. In metropolitan areas, fire vehicles need to cross highways and other traffic obstacles through some obstacle-overcoming points which delay the response time. In this paper, fire station location problem is analyzed. Simulation models are developed for the location problems which involve obstacles. Particular case problems are analyzed and the results are presented.

An Angioplasty Intervention Simulator with a Specific Virtual Environment

One of the essential requirements of a realistic surgical simulator is to reproduce haptic sensations due to the interactions in the virtual environment. However, the interaction need to be performed in real-time, since a delay between the user action and the system reaction reduces the immersion sensation. In this paper, a prototype of a coronary stent implant simulator is present; this system allows real-time interactions with an artery by means of a specific haptic device. To improve the realism of the simulation, the building of the virtual environment is based on real patients- images and a Web Portal is used to search in the geographically remote medical centres a virtual environment with specific features in terms of pathology or anatomy. The functional architecture of the system defines several Medical Centres in which virtual environments built from the real patients- images and related metadata with specific features in terms of pathology or anatomy are stored. The searched data are downloaded from the Medical Centre to the Training Centre provided with a specific haptic device and with the software necessary both to manage the interaction in the virtual environment. After the integration of the virtual environment in the simulation system it is possible to perform training on the specific surgical procedure.

Constitutive Equations for Human Saphenous Vein Coronary Artery Bypass Graft

Coronary artery bypass grafts (CABG) are widely studied with respect to hemodynamic conditions which play important role in presence of a restenosis. However, papers which concern with constitutive modeling of CABG are lacking in the literature. The purpose of this study is to find a constitutive model for CABG tissue. A sample of the CABG obtained within an autopsy underwent an inflation–extension test. Displacements were recoredered by CCD cameras and subsequently evaluated by digital image correlation. Pressure – radius and axial force – elongation data were used to fit material model. The tissue was modeled as onelayered composite reinforced by two families of helical fibers. The material is assumed to be locally orthotropic, nonlinear, incompressible and hyperelastic. Material parameters are estimated for two strain energy functions (SEF). The first is classical exponential. The second SEF is logarithmic which allows interpretation by means of limiting (finite) strain extensibility. Presented material parameters are estimated by optimization based on radial and axial equilibrium equation in a thick-walled tube. Both material models fit experimental data successfully. The exponential model fits significantly better relationship between axial force and axial strain than logarithmic one.

Acoustic Detection of the Red Date Palm Weevil

In this paper, acoustic techniques are used to detect hidden insect infestations of date palm tress (Phoenix dactylifera L.). In particular, we use an acoustic instrument for early discovery of the presence of a destructive insect pest commonly known as the Red Date Palm Weevil (RDPW) and scientifically as Rhynchophorus ferrugineus (Olivier). This type of insect attacks date palm tress and causes irreversible damages at late stages. As a result, the infected trees must be destroyed. Therefore, early presence detection is a major part in controlling the spread and economic damage caused by this type of infestation. Furthermore monitoring and early detection of the disease can asses in taking appropriate measures such as isolating or treating the infected trees. The acoustic system is evaluated in terms of its ability for early discovery of hidden bests inside the tested tree. When signal acquisitions is completed for a number of date palms, a signal processing technique known as time-frequency analysis is evaluated in terms of providing an estimate that can be visually used to recognize the acoustic signature of the RDPW. The testing instrument was tested in the laboratory first then; it was used on suspected or infested tress in the field. The final results indicate that the acoustic monitoring approach along with signal processing techniques are very promising for the early detection of presence of the larva as well as the adult pest in the date palms.

Efficacy of Anti-phishing Measures and Strategies - A Research Analysis

Statistics indicate that more than 1000 phishing attacks are launched every month. With 57 million people hit by the fraud so far in America alone, how do we combat phishing?This publication aims to discuss strategies in the war against Phishing. This study is an examination of the analysis and critique found in the ways adopted at various levels to counter the crescendo of phishing attacks and new techniques being adopted for the same. An analysis of the measures taken up by the varied popular Mail servers and popular browsers is done under this study. This work intends to increase the understanding and awareness of the internet user across the globe and even discusses plausible countermeasures at the users as well as the developers end. This conceptual paper will contribute to future research on similar topics.

Biokinetics of Coping Mechanism of Freshwater tilapia following Exposure to Waterborne and Dietary Copper

The purpose of this study was to understand the main sources of copper (Cu) accumulation in target organs of tilapia (Oreochromis mossambicus) and to investigate how the organism mediate the process of Cu accumulation under prolonged conditions. By measuring both dietary and waterborne Cu accumulation and total concentrations in tilapia with biokinetic modeling approach, we were able to clarify the biokinetic coping mechanisms for the long term Cu accumulation. This study showed that water and food are both the major source of Cu for the muscle and liver of tilapia. This implied that control the Cu concentration in these two routes will be correlated to the Cu bioavailability for tilapia. We found that exposure duration and level of waterborne Cu drove the Cu accumulation in tilapia. The ability for Cu biouptake and depuration in organs of tilapia were actively mediated under prolonged exposure conditions. Generally, the uptake rate, depuration rate and net bioaccumulation ability in all selected organs decreased with the increasing level of waterborne Cu and extension of exposure duration.Muscle tissues accounted for over 50%of the total accumulated Cu and played a key role in buffering the Cu burden in the initial period of exposure, alternatively, the liver acted a more important role in the storage of Cu with the extension of exposures. We concluded that assumption of the constant biokinetic rates could lead to incorrect predictions with overestimating the long-term Cu accumulation in ecotoxicological risk assessments.

Investigation of Self-Similarity Solution for Wake Flow of a Cylinder

The data measurement of mean velocity has been taken for the wake of single circular cylinder with three different diameters for two different velocities. The effects of change in diameter and in velocity are studied in self-similar coordinate system. The spatial variations of velocity defect and that of the half-width have been investigated. The results are compared with those published by H.Schlichting. In the normalized coordinates, it is also observed that all cases except for the first station are self-similar. By attention to self-similarity profiles of mean velocity, it is observed for all the cases at the each station curves tend to zero at a same point.