MIMO-OFDM Channel Tracking Using a Dynamic ANN Topology

All the available algorithms for blind estimation namely constant modulus algorithm (CMA), Decision-Directed Algorithm (DDA/DFE) suffer from the problem of convergence to local minima. Also, if the channel drifts considerably, any DDA looses track of the channel. So, their usage is limited in varying channel conditions. The primary limitation in such cases is the requirement of certain overhead bits in the transmit framework which leads to wasteful use of the bandwidth. Also such arrangements fail to use channel state information (CSI) which is an important aid in improving the quality of reception. In this work, the main objective is to reduce the overhead imposed by the pilot symbols, which in effect reduces the system throughput. Also we formulate an arrangement based on certain dynamic Artificial Neural Network (ANN) topologies which not only contributes towards the lowering of the overhead but also facilitates the use of the CSI. A 2×2 Multiple Input Multiple Output (MIMO) system is simulated and the performance variation with different channel estimation schemes are evaluated. A new semi blind approach based on dynamic ANN is proposed for channel tracking in varying channel conditions and the performance is compared with perfectly known CSI and least square (LS) based estimation.

Fault Classification of a Doubly FED Induction Machine Using Neural Network

Rapid progress in process automation and tightening quality standards result in a growing demand being placed on fault detection and diagnostics methods to provide both speed and reliability of motor quality testing. Doubly fed induction generators are used mainly for wind energy conversion in MW power plants. This paper presents a detection of an inter turn stator and an open phase faults, in a doubly fed induction machine whose stator and rotor are supplied by two pulse width modulation (PWM) inverters. The method used in this article to detect these faults, is based on Park-s Vector Approach, using a neural network.

Effect of Laser Power and Powder Flow Rate on Properties of Laser Metal Deposited Ti6Al4V

Laser Metal Deposition (LMD) is an additive manufacturing process with capabilities that include: producing new part directly from 3 Dimensional Computer Aided Design (3D CAD) model, building new part on the existing old component and repairing an existing high valued component parts that would have been discarded in the past. With all these capabilities and its advantages over other additive manufacturing techniques, the underlying physics of the LMD process is yet to be fully understood probably because of high interaction between the processing parameters and studying many parameters at the same time makes it further complex to understand. In this study, the effect of laser power and powder flow rate on physical properties (deposition height and deposition width), metallurgical property (microstructure) and mechanical (microhardness) properties on laser deposited most widely used aerospace alloy are studied. Also, because the Ti6Al4V is very expensive, and LMD is capable of reducing buy-to-fly ratio of aerospace parts, the material utilization efficiency is also studied. Four sets of experiments were performed and repeated to establish repeatability using laser power of 1.8 kW and 3.0 kW, powder flow rate of 2.88 g/min and 5.67 g/min, and keeping the gas flow rate and scanning speed constant at 2 l/min and 0.005 m/s respectively. The deposition height / width are found to increase with increase in laser power and increase in powder flow rate. The material utilization is favoured by higher power while higher powder flow rate reduces material utilization. The results are presented and fully discussed.

More Realistic Model for Simulating Min Protein Dynamics: Lattice Boltzmann Method Incorporating the Role of Nucleoids

The dynamics of Min proteins plays a center role in accurate cell division. Although the nucleoids may presumably play an important role in prokaryotic cell division, there is a lack of models to account for its participation. In this work, we apply the lattice Boltzmann method to investigate protein oscillation based on a mesoscopic model that takes into account the nucleoid-s role. We found that our numerical results are in reasonably good agreement with the previous experimental results On comparing with the other computational models without the presence of nucleoids, the highlight of our finding is that the local densities of MinD and MinE on the cytoplasmic membrane increases, especially along the cell width, when the size of the obstacle increases, leading to a more distinct cap-like structure at the poles. This feature indicated the realistic pattern and reflected the combination of Min protein dynamics and nucleoid-s role.

Gain Tuning Fuzzy Controller for an Optical Disk Drive

Since the driving speed and control accuracy of commercial optical disk are increasing significantly, it needs an efficient controller to monitor the track seeking and following operations of the servo system for achieving the desired data extracting response. The nonlinear behaviors of the actuator and servo system of the optical disk drive will influence the laser spot positioning. Here, the model-free fuzzy control scheme is employed to design the track seeking servo controller for a d.c. motor driving optical disk drive system. In addition, the sliding model control strategy is introduced into the fuzzy control structure to construct a 1-D adaptive fuzzy rule intelligent controller for simplifying the implementation problem and improving the control performance. The experimental results show that the steady state error of the track seeking by using this fuzzy controller can maintain within the track width (1.6 μm ). It can be used in the track seeking and track following servo control operations.

3D Network-on-Chip with on-Chip DRAM: An Empirical Analysis for Future Chip Multiprocessor

With the increasing number of on-chip components and the critical requirement for processing power, Chip Multiprocessor (CMP) has gained wide acceptance in both academia and industry during the last decade. However, the conventional bus-based onchip communication schemes suffer from very high communication delay and low scalability in large scale systems. Network-on-Chip (NoC) has been proposed to solve the bottleneck of parallel onchip communications by applying different network topologies which separate the communication phase from the computation phase. Observing that the memory bandwidth of the communication between on-chip components and off-chip memory has become a critical problem even in NoC based systems, in this paper, we propose a novel 3D NoC with on-chip Dynamic Random Access Memory (DRAM) in which different layers are dedicated to different functionalities such as processors, cache or memory. Results show that, by using our proposed architecture, average link utilization has reduced by 10.25% for SPLASH-2 workloads. Our proposed design costs 1.12% less execution cycles than the traditional design on average.

A Valley Detection for Path Planning

This paper presents a constrained valley detection algorithm. The intent is to find valleys in the map for the path planning that enables a robot or a vehicle to move safely. The constraint to the valley is a desired width and a desired depth to ensure the space for movement when a vehicle passes through the valley. We propose an algorithm to find valleys satisfying these 2 dimensional constraints. The merit of our algorithm is that the pre-processing and the post-processing are not necessary to eliminate undesired small valleys. The algorithm is validated through simulation using digitized elevation data.

Feedback-Controlled Server for Scheduling Aperiodic Tasks

This paper proposes a scheduling scheme using feedback control to reduce the response time of aperiodic tasks with soft real-time constraints. We design an algorithm based on the proposed scheduling scheme and Total Bandwidth Server (TBS) that is a conventional server technique for scheduling aperiodic tasks. We then describe the feedback controller of the algorithm and give the control parameter tuning methods. The simulation study demonstrates that the algorithm can reduce the mean response time up to 26% compared to TBS in exchange for slight deadline misses.

Microstructure and Corrosion Behavior of Laser Welded Magnesium Alloys with Silver Nanoparticles

Magnesium alloys have gained increased attention in recent years in automotive, electronics, and medical industry. This because of magnesium alloys have better properties than aluminum alloys and steels in respects of their low density and high strength to weight ratio. However, the main problems of magnesium alloy welding are the crack formation and the appearance of porosity during the solidification. This paper proposes a unique technique to weld two thin sheets of AZ31B magnesium alloy using a paste containing Ag nanoparticles. The paste containing Ag nanoparticles of 5 nm in average diameter and an organic solvent was used to coat the surface of AZ31B thin sheet. The coated sheet was heated at 100 °C for 60 s to evaporate the solvent. The dried sheet was set as a lower AZ31B sheet on the jig, and then lap fillet welding was carried out by using a pulsed Nd:YAG laser in a closed box filled with argon gas. The characteristics of the microstructure and the corrosion behavior of the joints were analyzed by opticalmicroscopy (OM), energy dispersive spectrometry (EDS), electron probe micro-analyzer (EPMA), scanning electron microscopy (SEM), and immersion corrosion test. The experimental results show that the wrought AZ31B magnesium alloy can be joined successfully using Ag nanoparticles. Ag nanoparticles insert promote grain refinement, narrower the HAZ width and wider bond width compared to weld without and insert. Corrosion rate of welded AZ31B with Ag nanoparticles reduced up to 44 % compared to base metal. The improvement of corrosion resistance of welded AZ31B with Ag nanoparticles due to finer grains and large grain boundaries area which consist of high Al content. β-phase Mg17Al12 could serve as effective barrier and suppressed further propagation of corrosion. Furthermore, Ag distribution in fusion zone provide much more finer grains and may stabilize the magnesium solid solution making it less soluble or less anodic in aqueous

Bandwidth Allocation in Mobile ATM Cellular Networks

Bandwidth allocation in wired network is less complex and to allocate bandwidth in wireless networks is complex and challenging, due to the mobility of source end system.This paper proposes a new approach to bandwidth allocation to higher and lower priority mobile nodes.In our proposal bandwidth allocation to new mobile node is based on bandwidth utilization of existing mobile nodes.The first section of the paper focuses on introduction to bandwidth allocation in wireless networks and presents the existing solutions available for allocation of bandwidth. The second section proposes the new solution for the bandwidth allocation to higher and lower priority nodes. Finally this paper ends with the analytical evaluation of the proposed solution.

High Performance In0.42Ga0.58As/In0.26Ga0.74As Vertical Cavity Surface Emitting Quantum Well Laser on In0.31Ga0.69As Ternary Substrate

This paper reports on the theoretical performance analysis of the 1.3 μm In0.42Ga0.58As /In0.26Ga0.74As multiple quantum well (MQW) vertical cavity surface emitting laser (VCSEL) on the ternary In0.31Ga0.69As substrate. The output power of 2.2 mW has been obtained at room temperature for 7.5 mA injection current. The material gain has been estimated to be ~3156 cm-1 at room temperature with the injection carrier concentration of 2×1017 cm-3. The modulation bandwidth of this laser is measured to be 9.34 GHz at room temperature for the biasing current of 2 mA above the threshold value. The outcomes reveal that the proposed InGaAsbased MQW laser is the promising one for optical communication system.

Experimental Inspection of Damage and Performance Evaluation after Repair and Strengthening of Jiamusi Highway Prestressed Concrete Bridge in China

The main objectives of this study are to inspect and identify any damage of jaimusi highway prestressed concrete bridge after repair and strengthening of damaged structural members and to evaluate the performance of the bridge structural members by adopting static load test. Inspection program after repair and strengthening includes identifying and evaluating the structural members of bridge such as T-shape cantilever structure, hanging beams, corbels, external tendons, anchor beams, sticking steel plate, and piers. The results of inspection show that the overall state of the bridge structural member after repair and strengthening is good. The results of rebound test of concrete strength show that the average strength of concrete is 46.31Mpa. Whereas, the average value of concrete strength of anchor beam is 49.82Mpa. According to the results of static load test, the experimental values are less than theoretical values of internal forces, deflection, and strain, indicating that the stiffness of the experimental structure, overall deformation and integrity satisfy the designed standard and the working performance is good, and the undertaking capacity has a certain surplus. There is not visible change in the length and width of cracks and there are not new cracks under experimental load.

Direct Torque Control - DTC of Induction Motor Used for Piloting a Centrifugal Pump Supplied by a Photovoltaic Generator

In this paper we propose the study of a centrifugal pump control system driven by a three-phase induction motor, which is supplied by a PhotoVoltaic PV generator. The system includes solar panel, a DC / DC converter equipped with its MPPT control, a voltage inverter to three-phase Pulse Width Modulation - PWM and a centrifugal pump driven by a three phase induction motor. In order to control the flow of the centrifugal pump, a Direct Torque Control - DTC of the induction machine is used. To illustrate the performances of the control, simulation results are carried out using Matlab/Simulink.

Some Physical and Mechanical Properties of Russian Olive Fruit

Physical and mechanical properties of Russian olive fruits were measured at moisture content of 14.43% w.b. The results revealed that the mean length, width and thickness of Russian olive fruits were 20.72, 15.73 and 14.69mm, respectively. Mean mass and volume of Russian olive fruits were measured as 1.45 g and 2.55 cm3, respectively. The sphericity, aspect ratio and surface area were calculated as 0.81, 0.72 and 8.96 cm2, respectively, while arithmetic mean diameter, geometric mean diameter and equivalent diameter of Russian olive fruits were 17.05, 16.83 and 16.84 mm, respectively. Whole fruit density, bulk density and porosity of jujube fruits were measured and found to be 1.01 g/cm3, 0.29 g/cm3 and 69.5%, respectively. The values of static coefficient of friction on three surfaces of glass, galvanized iron and plywood were 0.35, 0.36 and 0.43, respectively. The skin color (L*, a*, b*) varied from 9.92 to 16.08; 2.04 to 3.91 and 1.12 to 3.83, respectively. The values of rupture force, deformation, energy absorbed and hardness were found to be between 12.14-16.85 N, 2.16-4.25 mm, 3.42-6.99 N mm and 17.1-23.85 N/mm.

GridNtru: High Performance PKCS

Cryptographic algorithms play a crucial role in the information society by providing protection from unauthorized access to sensitive data. It is clear that information technology will become increasingly pervasive, Hence we can expect the emergence of ubiquitous or pervasive computing, ambient intelligence. These new environments and applications will present new security challenges, and there is no doubt that cryptographic algorithms and protocols will form a part of the solution. The efficiency of a public key cryptosystem is mainly measured in computational overheads, key size and bandwidth. In particular the RSA algorithm is used in many applications for providing the security. Although the security of RSA is beyond doubt, the evolution in computing power has caused a growth in the necessary key length. The fact that most chips on smart cards can-t process key extending 1024 bit shows that there is need for alternative. NTRU is such an alternative and it is a collection of mathematical algorithm based on manipulating lists of very small integers and polynomials. This allows NTRU to high speeds with the use of minimal computing power. NTRU (Nth degree Truncated Polynomial Ring Unit) is the first secure public key cryptosystem not based on factorization or discrete logarithm problem. This means that given sufficient computational resources and time, an adversary, should not be able to break the key. The multi-party communication and requirement of optimal resource utilization necessitated the need for the present day demand of applications that need security enforcement technique .and can be enhanced with high-end computing. This has promoted us to develop high-performance NTRU schemes using approaches such as the use of high-end computing hardware. Peer-to-peer (P2P) or enterprise grids are proven as one of the approaches for developing high-end computing systems. By utilizing them one can improve the performance of NTRU through parallel execution. In this paper we propose and develop an application for NTRU using enterprise grid middleware called Alchemi. An analysis and comparison of its performance for various text files is presented.

Modeling of Sensitivity for SPR Biosensors- New Aspects

The computer modeling is carried out for parameter of sensitivity of optoelectronic chemical and biosensors, using phenomena of surface plasmon resonance (SPR). The physical model of SPR-sensor-s is described with (or without) of modifications of sensitive gold film surface by a dielectric layer. The variants of increasing of sensitivity for SPR-biosensors, constructed on the principle gold – dielectric – biomolecular layer are considered. Two methods of mathematical treatment of SPR-curve are compared – traditional, with estimation of sensor-s response as shift of the SPRcurve minimum and proposed, for system with dielectric layer, using calculating of the derivative in the point of SPR-curve half-width.

Effective Software-Based Solution for Processing Mass Downstream Data in Interactive Push VOD System

Interactive push VOD system is a new kind of system that incorporates push technology and interactive technique. It can push movies to users at high speeds at off-peak hours for optimal network usage so as to save bandwidth. This paper presents effective software-based solution for processing mass downstream data at terminals of interactive push VOD system, where the service can download movie according to a viewer-s selection. The downstream data is divided into two catalogs: (1) the carousel data delivered according to DSM-CC protocol; (2) IP data delivered according to Euro-DOCSIS protocol. In order to accelerate download speed and reduce data loss rate at terminals, this software strategy introduces caching, multi-thread and resuming mechanisms. The experiments demonstrate advantages of the software-based solution.

On-line Identification of Continuous-time Hammerstein Systems via RBF Networks and Immune Algorithm

This paper deals with an on-line identification method of continuous-time Hammerstein systems by using the radial basis function (RBF) networks and immune algorithm (IA). An unknown nonlinear static part to be estimated is approximately represented by the RBF network. The IA is efficiently combined with the recursive least-squares (RLS) method. The objective function for the identification is regarded as the antigen. The candidates of the RBF parameters such as the centers and widths are coded into binary bit strings as the antibodies and searched by the IA. On the other hand, the candidates of both the weighting parameters of the RBF network and the system parameters of the linear dynamic part are updated by the RLS method. Simulation results are shown to illustrate the proposed method.

A Survey: Bandwidth Management in an IP Based Network

this paper presented a survey analysis subjected on network bandwidth management from published papers referred in IEEE Explorer database in three years from 2009 to 2011. Network Bandwidth Management is discussed in today-s issues for computer engineering applications and systems. Detailed comparison is presented between published papers to look further in the IP based network critical research area for network bandwidth management. Important information such as the network focus area, a few modeling in the IP Based Network and filtering or scheduling used in the network applications layer is presented. Many researches on bandwidth management have been done in the broad network area but fewer are done in IP Based network specifically at the applications network layer. A few researches has contributed new scheme or enhanced modeling but still the issue of bandwidth management still arise at the applications network layer. This survey is taken as a basic research towards implementations of network bandwidth management technique, new framework model and scheduling scheme or algorithm in an IP Based network which will focus in a control bandwidth mechanism in prioritizing the network traffic the applications layer.

Some Physical Properties of Musk Lime (Citrus Microcarpa)

Some physical properties of musk lime (Citrus microcarpa) were determined in this study. The average moisture content (wet basis) of the fruit was found to be 85.10 (±0.72) %. The mean of length, width and thickness of the fruit was 26.36 (±0.97), 26.40 (±1.04) and 25.26 (±0.94) mm respectively. The average value for geometric mean diameter, sphericity, aspect ratio, mass, surface area, volume, true density, bulk density and porosity was 26.00 (±0.82) mm, 98.67 (±2.04) %, 100.23 (±3.28) %, 10.007 (±0.878) g, 2125.07 (±133.93) mm2, 8800.00 (±731.82) mm3, 1002.87 (±39.16) kgm-3, 501.70 (±22.58) kgm-3 and 49.89 (±3.15) % respectively. The coefficient of static friction on four types of structural surface was found to be varying from 0.238 (±0.025) for glass to 0.247 (±0.024) for steel surface.