Entropy based Expeditive Methodology for Rating Curves Assessment

The river flow forecasting represents a crucial point to employ for improving a management policy addressed to the right use of water resources as well as for conjugating prevention and defense actions against environmental degradation. The difficulties occurring during the field activities encourage the development and implementation of operative computation and measuring methods addressed to time reduction for data acquisition and processing maintaining a good level of accuracy. Therefore, the aim of the present work is to test a new entropy based expeditive methodology for the evaluation of the rating curves on three gauged sections with different geometric and morphological characteristics. The methodology requires the choice of only three verticals along the measure section and the sampling of only the maximum velocity. The results underline how in most conditions the rating curves drawn can replace those built with classic methodologies, simplifying thus the procedures of data monitoring and calculation.

Citizen Participation in Informal Settlements; Potentials & Obstacles - The Case of Iran, Shiraz, Saadi Community

In recent years, “Bottom-up Planning Approach" has been widely accepted and expanded from planning theorists. Citizen participation becomes more important in decision-making in informal settlements. Many of previous projects and strategies due to ignorance of citizen participation, have been failed facing with informal settlements and in some cases lead physical expansion of these neighbourhoods. According to recent experiences, the new participatory approach was in somehow successful. This paper focuses on local experiences in Iran. A considerable amount of people live in informal settlements in Iran. With the previous methods, the government could not solve the problems of these settlements. It is time to examine new methods such as empowerment of the local citizens and involve them to solve the current physical, social, and economic problems. The paper aims to address the previous and new strategies facing with informal settlements, the conditions under which citizens could be involved in planning process, limits and potentials of this process, the main actors and issues and finally motivations that are able to promote citizen participation. Documentary studies, observation, interview and questionnaire have been used to achieve the above mentioned objectives. Nearly 80 percent of responder in Saadi Community are ready to participate in regularising their neighbourhoods, if pre-conditions of citizen involvement are being provided. These pre-conditions include kind of problem and its severity, the importance of issue, existence of a short-term solution, etc. Moreover, confirmation of dweller-s ownership can promote the citizen engagement in participatory projects.

MAS Simulations of Optical Antenna Structures

A semi-analytic boundary discretization method, the Method of Auxiliary Sources (MAS) is used to analyze Optical Antennas consisting of metallic parts. In addition to standard dipoletype antennas, consisting of two pieces of metal, a new structure consisting of a single metal piece with a tiny groove in the center is analyzed. It is demonstrated that difficult numerical problems are caused because optical antennas exhibit strong material dispersion, loss, and plasmon-polariton effects that require a very accurate numerical simulation. This structure takes advantage of the Channel Plasmon-Polariton (CPP) effect and exhibits a strong enhancement of the electric field in the groove. Also primitive 3D antenna model with spherical nano particles is analyzed.

Improved Asymptotic Stability Analysis for Lure Systems with Neutral Type and Time-varying Delays

This paper investigates the problem of absolute stability and robust stability of a class of Lur-e systems with neutral type and time-varying delays. By using Lyapunov direct method and linear matrix inequality technique, new delay-dependent stability criteria are obtained and formulated in terms of linear matrix inequalities (LMIs) which are easy to check the stability of the considered systems. To obtain less conservative stability conditions, an operator is defined to construct the Lyapunov functional. Also, the free weighting matrices approach combining a matrix inequality technique is used to reduce the entailed conservativeness. Numerical examples are given to indicate significant improvements over some existing results.

The Application of Learning Systems to Support Decision for Stakeholder and Infrastructures Managers Based On Crowdsourcing

The actual grow of the infrastructure in develop country require sophisticate ways manage the operation and control the quality served. This research wants to concentrate in the operation of this infrastructure beyond the construction. The infrastructure-s operation involves an uncertain environment, where unexpected variables are present every day and everywhere. Decision makers need to make right decisions with right information/data analyzed most in real time. To adequately support their decisions and decrease any negative impact and collateral effect, they need to use computational tools called decision support systems (DSS), but now the main source of information came from common users thought an extensive crowdsourcing

A Linear Use Case Based Software Cost Estimation Model

Software development is moving towards agility with use cases and scenarios being used for requirements stories. Estimates of software costs are becoming even more important than before as effects of delays is much larger in successive short releases context of agile development. Thus, this paper reports on the development of new linear use case based software cost estimation model applicable in the very early stages of software development being based on simple metric. Evaluation showed that accuracy of estimates varies between 43% and 55% of actual effort of historical test projects. These results outperformed those of wellknown models when applied in the same context. Further work is being carried out to improve the performance of the proposed model when considering the effect of non-functional requirements.

Depth Controls of an Autonomous Underwater Vehicle by Neurocontrollers for Enhanced Situational Awareness

This paper focuses on a critical component of the situational awareness (SA), the neural control of autonomous constant depth flight of an autonomous underwater vehicle (AUV). Autonomous constant depth flight is a challenging but important task for AUVs to achieve high level of autonomy under adverse conditions. The fundamental requirement for constant depth flight is the knowledge of the depth, and a properly designed controller to govern the process. The AUV, named VORAM, is used as a model for the verification of the proposed hybrid control algorithm. Three neural network controllers, named NARMA-L2 controllers, are designed for fast and stable diving maneuvers of chosen AUV model. This hybrid control strategy for chosen AUV model has been verified by simulation of diving maneuvers using software package Simulink and demonstrated good performance for fast SA in real-time searchand- rescue operations.

Managing Handheld Devices in Ad-Hoc Collaborative Computing Environments

The noticeable advance in the area of computer technology has paved the way for the invention of powerful mobile devices. However, limited storage, short battery life, and relatively low computational power define the major problems of such devices. Due to the ever increasing computational requirements, such devices may fail to process needed tasks under certain constraints. One of the proposed solutions to this drawback is the introduction of Collaborative Computing, a new concept dealing with the distribution of computational tasks amongst several handhelds. This paper introduces the basics of Collaborative Computing, and proposes a new protocol that aims at managing and optimizing computing tasks in Ad-Hoc Collaborative Computing Environments.

A New Traffic Pattern Matching for DDoS Traceback Using Independent Component Analysis

Recently, Denial of Service(DoS) attacks and Distributed DoS(DDoS) attacks which are stronger form of DoS attacks from plural hosts have become security threats on the Internet. It is important to identify the attack source and to block attack traffic as one of the measures against these attacks. In general, it is difficult to identify them because information about the attack source is falsified. Therefore a method of identifying the attack source by tracing the route of the attack traffic is necessary. A traceback method which uses traffic patterns, using changes in the number of packets over time as criteria for the attack traceback has been proposed. The traceback method using the traffic patterns can trace the attack by matching the shapes of input traffic patterns and the shape of output traffic pattern observed at a network branch point such as a router. The traffic pattern is a shapes of traffic and unfalsifiable information. The proposed trace methods proposed till date cannot obtain enough tracing accuracy, because they directly use traffic patterns which are influenced by non-attack traffics. In this paper, a new traffic pattern matching method using Independent Component Analysis(ICA) is proposed.

Domain-based Key Management Scheme for Active Network

Active network was developed to solve the problem of the current sharing-based network–difficulty in applying new technology, service or standard, and duplicated operation at several protocol layers. Active network can transport the packet loaded with the executable codes, which enables to change the state of the network node. However, if the network node is placed in the sharing-based network, security and safety issues should be resolved. To satisfy this requirement, various security aspects are required such as authentication, authorization, confidentiality and integrity. Among these security components, the core factor is the encryption key. As a result, this study is designed to propose the scheme that manages the encryption key, which is used to provide security of the comprehensive active directory, based on the domain.

Role-based Access Control Model in Home Network Environments

The home in these days has not one computer connected to the Internet but rather a network of many devices within the home, and that network might be connected to the Internet. In such an environment, the potential for attacks is greatly increased. The general security technology can not apply because of the use of various wired and wireless network, middleware and protocol in digital home environment and a restricted system resource of home information appliances. To offer secure home services home network environments have need of access control for various home devices and information when users want to access. Therefore home network access control for user authorization is a very important issue. In this paper we propose access control model using RBAC in home network environments to provide home users with secure home services.

Using Heuristic Rules from Sentence Decomposition of Experts- Summaries to Detect Students- Summarizing Strategies

Summarizing skills have been introduced to English syllabus in secondary school in Malaysia to evaluate student-s comprehension for a given text where it requires students to employ several strategies to produce the summary. This paper reports on our effort to develop a computer-based summarization assessment system that detects the strategies used by the students in producing their summaries. Sentence decomposition of expert-written summaries is used to analyze how experts produce their summary sentences. From the analysis, we identified seven summarizing strategies and their rules which are then transformed into a set of heuristic rules on how to determine the summarizing strategies. We developed an algorithm based on the heuristic rules and performed some experiments to evaluate and support the technique proposed.

Synthesis and Characterization of Cu-NanoWire Arrays by EMD Using ITO-Template

Nanowire arrays of copper with uniform diameters have been synthesized by potentiostatic electrochemical metal deposition (EMD) of copper sulphate and potassium chloride solution within the nano-channels of porous Indium-Tin Oxide (ITO), also known as Tin doped Indium Oxide templates. The nanowires developed were fairly continuous with diameters ranging from 110-140 nm along the entire length. Single as well as poly-crystalline copper wires have been prepared by application of appropriate potential during the EMD process. Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), small angle electron diffraction (SAED) and atomic force microscopy (AFM) were used to characterize the synthesized nano wires at room temperature. The electrochemical response of synthesized products was evaluated by cyclic voltammetry while surface energy analysis was carried out using a Goniometer.

Personalisation of SOA Registry Query Results: Implementation, Performance Analysis and Scalability Evaluation

Service discovery is a very important component of Service Oriented Architectures (SOA). This paper presents two alternative approaches to customise the query results of private service registry such as Universal Description, Discovery and Integration (UDDI). The customisation is performed based on some pre-defined and/or real-time changing parameters. This work identifies the requirements, designs and additional mechanisms that must be applied to UDDI in order to support this customisation capability. We also detail the implements of the approaches and examine its performance and scalability. Based on our experimental results, we conclude that both approaches can be used to customise registry query results, but by storing personalization parameters in external resource will yield better performance and but less scalable when size of query results increases. We believe these approaches when combined with semantics enabled service registry will enhance the service discovery methods within a private UDDI registry environment.

Performance Analysis of MC-SS for the Indoor BPLC Systems

power-line networks are promise infrastructure for broadband services provision to end users. However, the network performance is affected by stochastic channel changing which is due to load impedances, number of branches and branched line lengths. It has been proposed that multi-carrier modulations techniques such as orthogonal frequency division multiplexing (OFDM), Multi-Carrier Spread Spectrum (MC-SS), wavelet OFDM can be used in such environment. This paper investigates the performance of different indoor topologies of power-line networks that uses MC-SS modulation scheme.It is observed that when a branch is added in the link between sending and receiving end of an indoor channel an average of 2.5dB power loss is found. In additional, when the branch is added at a node an average of 1dB power loss is found. Additionally when the terminal impedances of the branch change from line characteristic impedance to impedance either higher or lower values the channel performances were tremendously improved. For example changing terminal load from characteristic impedance (85 .) to 5 . the signal to noise ratio (SNR) required to attain the same performances were decreased from 37dB to 24dB respectively. Also, changing the terminal load from channel characteristic impedance (85 .) to very higher impedance (1600 .) the SNR required to maintain the same performances were decreased from 37dB to 23dB. The result concludes that MC-SS performs better compared with OFDM techniques in all aspects and especially when the channel is terminated in either higher or lower impedances.

An Artificial Immune System for a Multi Agent Robotics System

This paper explores an application of an adaptive learning mechanism for robots based on the natural immune system. Most of the research carried out so far are based either on the innate or adaptive characteristics of the immune system, we present a combination of these to achieve behavior arbitration wherein a robot learns to detect vulnerable areas of a track and adapts to the required speed over such portions. The test bed comprises of two Lego robots deployed simultaneously on two predefined near concentric tracks with the outer robot capable of helping the inner one when it misaligns. The helper robot works in a damage-control mode by realigning itself to guide the other robot back onto its track. The panic-stricken robot records the conditions under which it was misaligned and learns to detect and adapt under similar conditions thereby making the overall system immune to such failures.

Predicting Individual Investors- Intention to Invest: An Experimental Analysis of Attitude as a Mediator

The survival of publicly listed companies largely depends on their stocks being liquidly traded. This goal can be achieved when new investors are attracted to invest on companies- stocks. Among different groups of investors, individual investors are generally less able to objectively evaluate companies- risks and returns, and tend to be emotionally biased in their investing decisions. Therefore their decisions may be formed as a result of perceived risks and returns, and influenced by companies- images. This study finds that perceived risk, perceived returns and trust directly affect individual investors- trading decisions while attitude towards brand partially mediates the relationships. This finding suggests that, in courting individual investors, companies still need to perform financially while building a good image can result in their stocks being accepted quicker than the stocks of good performing companies with hidden images.

Use of Vegetation and Geo-Jute in Erosion Control of Slopes in a Sub-Tropical Climate

Protection of slope and embankment from erosion has become an important issue in Bangladesh. The constructions of strong structures require large capital, integrated designing, high maintenance cost. Strong structure methods have negative impact on the environment and sometimes not function for the design period. Plantation of vetiver system along the slopes is an alternative solution. Vetiver not only serves the purpose of slope protection but also adds green environment reducing pollution. Vetiver is available in almost all the districts of Bangladesh. This paper presents the application of vetiver system with geo-jute, for slope protection and erosion control of embankments and slopes. In-situ shear tests have been conducted on vetiver rooted soil system to find the shear strength. The shear strength and effective soil cohesion of vetiver rooted soil matrix are respectively 2.0 times and 2.1 times higher than that of the bared soil. Similar trends have been found in direct shear tests conducted on laboratory reconstituted samples. Field trials have been conducted in road embankment and slope protection with vetiver at different sites. During the time of vetiver root growth the soil protection has been accomplished by geo-jute. As the geo-jute degrades with time, vetiver roots grow and take over the function of geo-jutes. Slope stability analyses showed that vegetation increase the factor of safety significantly.

Analysis of SEIG for a Wind Pumping Plant Using Induction Motor

In contrast to conventional generators, self-excited induction generators are found to be most suitable machines for wind energy conversion in remote and windy areas due to many advantages over grid connected machines. This papers presents a Self-Excited Induction Generator (SEIG) driven by wind turbine and supplying an induction motor which is coupled to a centrifugal pump. A method to describe the steady state performance based on nodal analysis is presented. Therefore the advanced knowledge of the minimum excitation capacitor value is required. The effects of variation of excitation capacitance on system and rotor speed under different loading conditions have been analyzed and considered to optimize induction motor pump performances.

Solution of First kind Fredholm Integral Equation by Sinc Function

Sinc-collocation scheme is one of the new techniques used in solving numerical problems involving integral equations. This method has been shown to be a powerful numerical tool for finding fast and accurate solutions. So, in this paper, some properties of the Sinc-collocation method required for our subsequent development are given and are utilized to reduce integral equation of the first kind to some algebraic equations. Then convergence with exponential rate is proved by a theorem to guarantee applicability of numerical technique. Finally, numerical examples are included to demonstrate the validity and applicability of the technique.