CART Method for Modeling the Output Power of Copper Bromide Laser

This paper examines the available experiment data for a copper bromide vapor laser (CuBr laser), emitting at two wavelengths - 510.6 and 578.2nm. Laser output power is estimated based on 10 independent input physical parameters. A classification and regression tree (CART) model is obtained which describes 97% of data. The resulting binary CART tree specifies which input parameters influence considerably each of the classification groups. This allows for a technical assessment that indicates which of these are the most significant for the manufacture and operation of the type of laser under consideration. The predicted values of the laser output power are also obtained depending on classification. This aids the design and development processes considerably.

Bioinformatic Analysis of Retroelement-Associated Sequences in Human and Mouse Promoters

Mammalian genomes contain large number of retroelements (SINEs, LINEs and LTRs) which could affect expression of protein coding genes through associated transcription factor binding sites (TFBS). Activity of the retroelement-associated TFBS in many genes is confirmed experimentally but their global functional impact remains unclear. Human SINEs (Alu repeats) and mouse SINEs (B1 and B2 repeats) are known to be clustered in GCrich gene rich genome segments consistent with the view that they can contribute to regulation of gene expression. We have shown earlier that Alu are involved in formation of cis-regulatory modules (clusters of TFBS) in human promoters, and other authors reported that Alu located near promoter CpG islands have an increased frequency of CpG dinucleotides suggesting that these Alu are undermethylated. Human Alu and mouse B1/B2 elements have an internal bipartite promoter for RNA polymerase III containing conserved sequence motif called B-box which can bind basal transcription complex TFIIIC. It has been recently shown that TFIIIC binding to B-box leads to formation of a boundary which limits spread of repressive chromatin modifications in S. pombe. SINEassociated B-boxes may have similar function but conservation of TFIIIC binding sites in SINEs located near mammalian promoters has not been studied earlier. Here we analysed abundance and distribution of retroelements (SINEs, LINEs and LTRs) in annotated sequences of the Database of mammalian transcription start sites (DBTSS). Fractions of SINEs in human and mouse promoters are slightly lower than in all genome but >40% of human and mouse promoters contain Alu or B1/B2 elements within -1000 to +200 bp interval relative to transcription start site (TSS). Most of these SINEs is associated with distal segments of promoters (-1000 to -200 bp relative to TSS) indicating that their insertion at distances >200 bp upstream of TSS is tolerated during evolution. Distribution of SINEs in promoters correlates negatively with the distribution of CpG sequences. Using analysis of abundance of 12-mer motifs from the B1 and Alu consensus sequences in genome and DBTSS it has been confirmed that some subsegments of Alu and B1 elements are poorly conserved which depends in part on the presence of CpG dinucleotides. One of these CpG-containing subsegments in B1 elements overlaps with SINE-associated B-box and it shows better conservation in DBTSS compared to genomic sequences. It has been also studied conservation in DBTSS and genome of the B-box containing segments of old (AluJ, AluS) and young (AluY) Alu repeats and found that CpG sequence of the B-box of old Alu is better conserved in DBTSS than in genome. This indicates that Bbox- associated CpGs in promoters are better protected from methylation and mutation than B-box-associated CpGs in genomic SINEs. These results are consistent with the view that potential TFIIIC binding motifs in SINEs associated with human and mouse promoters may be functionally important. These motifs may protect promoters from repressive histone modifications which spread from adjacent sequences. This can potentially explain well known clustering of SINEs in GC-rich gene rich genome compartments and existence of unmethylated CpG islands.

Study on Crater Detection Using FLDA

In this paper, we validate crater detection in moon surface image using FLDA. This proposal assumes that it is applied to SLIM (Smart Lander for Investigating Moon) project aiming at the pin-point landing to the moon surface. The point where the lander should land is judged by the position relations of the craters obtained via camera, so the real-time image processing becomes important element. Besides, in the SLIM project, 400kg-class lander is assumed, therefore, high-performance computers for image processing cannot be equipped. We are studying various crater detection methods such as Haar-Like features, LBP, and PCA. And we think these methods are appropriate to the project, however, to identify the unlearned images obtained by actual is insufficient. In this paper, we examine the crater detection using FLDA, and compare with the conventional methods.

New Simultaneous High Performance Liquid Chromatographic Method for Determination of NSAIDs and Opioid Analgesics in Advanced Drug Delivery Systems and Human Plasma

A new and cost effective RP-HPLC method was developed and validated for simultaneous analysis of non steroidal anti inflammatory dugs Diclofenac sodium (DFS), Flurbiprofen (FLP) and an opioid analgesic Tramadol (TMD) in advanced drug delivery systems (Liposome and Microcapsules), marketed brands and human plasma. Isocratic system was employed for the flow of mobile phase consisting of 10 mM sodium dihydrogen phosphate buffer and acetonitrile in molar ratio of 67: 33 with adjusted pH of 3.2. The stationary phase was hypersil ODS column (C18, 250×4.6 mm i.d., 5 μm) with controlled temperature of 30 C°. DFS in liposomes, microcapsules and marketed drug products was determined in range of 99.76-99.84%. FLP and TMD in microcapsules and brands formulation were 99.78 - 99.94 % and 99.80 - 99.82 %, respectively. Single step liquid-liquid extraction procedure using combination of acetonitrile and trichloroacetic acid (TCA) as protein precipitating agent was employed. The detection limits (at S/N ratio 3) of quality control solutions and plasma samples were 10, 20, and 20 ng/ml for DFS, FLP and TMD, respectively. The Assay was acceptable in linear dynamic range. All other validation parameters were found in limits of FDA and ICH method validation guidelines. The proposed method is sensitive, accurate and precise and could be applicable for routine analysis in pharmaceutical industry as well as in human plasma samples for bioequivalence and pharmacokinetics studies.

Towards a New Methodology for Developing Web-Based Systems

Web-based systems have become increasingly important due to the fact that the Internet and the World Wide Web have become ubiquitous, surpassing all other technological developments in our history. The Internet and especially companies websites has rapidly evolved in their scope and extent of use, from being a little more than fixed advertising material, i.e. a "web presences", which had no particular influence for the company's business, to being one of the most essential parts of the company's core business. Traditional software engineering approaches with process models such as, for example, CMM and Waterfall models, do not work very well since web system development differs from traditional development. The development differs in several ways, for example, there is a large gap between traditional software engineering designs and concepts and the low-level implementation model, many of the web based system development activities are business oriented (for example web application are sales-oriented, web application and intranets are content-oriented) and not engineering-oriented. This paper aims to introduce Increment Iterative extreme Programming (IIXP) methodology for developing web based systems. In difference to the other existence methodologies, this methodology is combination of different traditional and modern software engineering and web engineering principles.

A Preliminary X-Ray Study on Human-Hair Microstructures for a Health-State Indicator

We present a preliminary x-ray study on human-hair microstructures for a health-state indicator, in particular a cancer case. As an uncomplicated and low-cost method of x-ray technique, the human-hair microstructure was analyzed by wide-angle x-ray diffractions (XRD) and small-angle x-ray scattering (SAXS). The XRD measurements exhibited the simply reflections at the d-spacing of 28 Å, 9.4 Å and 4.4 Å representing to the periodic distance of the protein matrix of the human-hair macrofibrous and the diameter and the repeated spacing of the polypeptide alpha helixes of the photofibrils of the human-hair microfibrous, respectively. When compared to the normal cases, the unhealthy cases including to the breast- and ovarian-cancer cases obtained higher normalized ratios of the x-ray diffracting peaks of 9.4 Å and 4.4 Å. This likely resulted from the varied distributions of microstructures by a molecular alteration. As an elemental analysis by x-ray fluorescence (XRF), the normalized quantitative ratios of zinc(Zn)/calcium(Ca) and iron(Fe)/calcium(Ca) were determined. Analogously, both Zn/Ca and Fe/Ca ratios of the unhealthy cases were obtained higher than both of the normal cases were. Combining the structural analysis by XRD measurements and the elemental analysis by XRF measurements exhibited that the modified fibrous microstructures of hair samples were in relation to their altered elemental compositions. Therefore, these microstructural and elemental analyses of hair samples will be benefit to associate with a diagnosis of cancer and genetic diseases. This functional method would lower a risk of such diseases by the early diagnosis. However, the high-intensity x-ray source, the highresolution x-ray detector, and more hair samples are necessarily desired to develop this x-ray technique and the efficiency would be enhanced by including the skin and fingernail samples with the human-hair analysis.

Synthesis and Characterization of Gallosilicate Sodalite Containing NO2- Ions

Pure phase gallosilicate nitrite sodalite has been synthesized in a single step by low temperature (373 oK) hydrothermal technique. The product obtained was characterized using a combination of techniques including X-ray powder diffraction, IR, Raman spectroscopy, SEM, MAS NMR spectroscopy as well as thermogravimetry. Sodalite with an ideal composition was obtained after synthesis at 3730K and seven days duration using alkaline medium. The structural features of the Na8[GaSiO4]6(NO2)2 sodalite were investigated by IR, MAS NMR spectroscopy of 29Si and 23Na nuclei and by Reitveld refinement of X-ray powder diffraction data. The crystal structure of this sodalite has been refined in the space group P 4 3n; with a cell parameter 8.98386Å, V= 726.9 Å, (Rwp= 0.077 and Rp=0.0537) and Si-O-Ga angle is found to be 132.920 . MAS NMR study confirms complete ordering of Si and Ga in the gallosilicate framework. The surface area of single entity with stoichiometry Na8[GaSiO4]6(NO2)2 was found to be 8.083 x10-15 cm2/g.

Resonant-Based Capacitive Pressure Sensor Read-Out Oscillating at 1.67 GHz in 0.18

This paper presents a resonant-based read-out circuit for capacitive pressure sensors. The proposed read-out circuit consists of an LC oscillator and a counter. The circuit detects the capacitance changes of a capacitive pressure sensor by means of frequency shifts from its nominal operation frequency. The proposed circuit is designed in 0.18m CMOS with an estimated power consumption of 43.1mW. Simulation results show that the circuit has a capacitive resolution of 8.06kHz/fF, which enables it for high resolution pressure detection.

On-line Recognition of Isolated Gestures of Flight Deck Officers (FDO)

The paper presents an on-line recognition machine (RM) for continuous/isolated, dynamic and static gestures that arise in Flight Deck Officer (FDO) training. RM is based on generic pattern recognition framework. Gestures are represented as templates using summary statistics. The proposed recognition algorithm exploits temporal and spatial characteristics of gestures via dynamic programming and Markovian process. The algorithm predicts corresponding index of incremental input data in the templates in an on-line mode. Accumulated consistency in the sequence of prediction provides a similarity measurement (Score) between input data and the templates. The algorithm provides an intuitive mechanism for automatic detection of start/end frames of continuous gestures. In the present paper, we consider isolated gestures. The performance of RM is evaluated using four datasets - artificial (W TTest), hand motion (Yang) and FDO (tracker, vision-based ). RM achieves comparable results which are in agreement with other on-line and off-line algorithms such as hidden Markov model (HMM) and dynamic time warping (DTW). The proposed algorithm has the additional advantage of providing timely feedback for training purposes.

A Novel Approach to Fault Classification and Fault Location for Medium Voltage Cables Based on Artificial Neural Network

A novel application of neural network approach to fault classification and fault location of Medium voltage cables is demonstrated in this paper. Different faults on a protected cable should be classified and located correctly. This paper presents the use of neural networks as a pattern classifier algorithm to perform these tasks. The proposed scheme is insensitive to variation of different parameters such as fault type, fault resistance, and fault inception angle. Studies show that the proposed technique is able to offer high accuracy in both of the fault classification and fault location tasks.

Optimizing Electrospinning Parameters for Finest Diameter of Nano Fibers

Nano fibers produced by electrospinning are of industrial and scientific attention due to their special characteristics such as long length, small diameter and high surface area. Applications of electrospun structures in nanotechnology are included tissue scaffolds, fibers for drug delivery, composite reinforcement, chemical sensing, enzyme immobilization, membrane-based filtration, protective clothing, catalysis, solar cells, electronic devices and others. Many polymer and ceramic precursor nano fibers have been successfully electrospun with diameters in the range from 1 nm to several microns. The process is complex so that fiber diameter is influenced by various material, design and operating parameters. The objective of this work is to apply genetic algorithm on the parameters of electrospinning which have the most significant effect on the nano fiber diameter to determine the optimum parameter values before doing experimental set up. Effective factors including initial polymer concentration, initial jet radius, electrical potential, relaxation time, initial elongation, viscosity and distance between nozzle and collector are considered to determine finest diameter which is selected by user.

Development of a New CFD Multi-Coupling Tool Based on Immersed Boundary Method: toward SRM Analysis

The ongoing effort to develop an in-house compressible solver with multi-disciplinary physics is presented in this paper. Basic compressible solver combined with IBM technique provides us an effective numerical tool able to tackle the physics phenomena and especially physic phenomena involved in Solid Rocket Motors (SRMs). Main principles are introduced step by step describing its implementation. This paper sheds light on the whole potentiality of our proposed numerical model and we strongly believe a way to introduce multi-physics mechanisms strongly coupled is opened to ablation in nozzle, fluid/structure interaction and burning propellant surface with time.

Novel SNC-NN-MRAS Based Speed Estimator for Sensor-Less Vector Controlled IM Drives

Rotor Flux based Model Reference Adaptive System (RF-MRAS) is the most popularly used conventional speed estimation scheme for sensor-less IM drives. In this scheme, the voltage model equations are used for the reference model. This encounters major drawbacks at low frequencies/speed which leads to the poor performance of RF-MRAS. Replacing the reference model using Neural Network (NN) based flux estimator provides an alternate solution and addresses such drawbacks. This paper identifies an NN based flux estimator using Single Neuron Cascaded (SNC) Architecture. The proposed SNC-NN model replaces the conventional voltage model in RF-MRAS to form a novel MRAS scheme named as SNC-NN-MRAS. Through simulation the proposed SNC-NN-MRAS is shown to be promising in terms of all major issues and robustness to parameter variation. The suitability of the proposed SNC-NN-MRAS based speed estimator and its advantages over RF-MRAS for sensor-less induction motor drives is comprehensively presented through extensive simulations.

Are Lecturers- Ready for Usage of Mobile Technology for Teaching?

Descriptive statistics was performed with the aim to achieve research objective of to investigate lecturers- usage of the mobile technology for teaching. A representative sample of 20 lecturers from the Faculty of Industrial Art & Design Technology of Universiti Industri Selangor (UNISEL), Malaysia was selected as the respondents. The result attested that lecturers fully accept the concept of mobility in learning and game play is appealing concept to support classroom learning. Subsequently, analogous experience on small size of keypad, screen resolution, and navigation could be the major problematic factors to students and affect their mobile learning process. Recommendation for future research is also presented.

Flagging Critical Components to Prevent Transient Faults in Real-Time Systems

This paper proposes the use of metrics in design space exploration that highlight where in the structure of the model and at what point in the behaviour, prevention is needed against transient faults. Previous approaches to tackle transient faults focused on recovery after detection. Almost no research has been directed towards preventive measures. But in real-time systems, hard deadlines are performance requirements that absolutely must be met and a missed deadline constitutes an erroneous action and a possible system failure. This paper proposes the use of metrics to assess the system design to flag where transient faults may have significant impact. These tools then allow the design to be changed to minimize that impact, and they also flag where particular design techniques – such as coding of communications or memories – need to be applied in later stages of design.

Microbiological Contamination of Outdoor Air in Marine Durres's Harbour, Albania

Microbial air contamination of the outdoor air in Marine Durres-s Harbour (Durres, Albania) was estimated by sedimentation technique in August-October 2008. The sampling areas were: Ferry Terminal (FT), Fishery Harbor (FH), East Zone (EZ), Fuel Quay (FQ) and Apollonian Beach (AB). The aim of this study was to measure the number of aerobic plate count (mesophilic aerobic bacteria) and fungi (yeasts and molds) in the outdoor air in these areas. The number of colonies that were formed determines the number of cells at the moment in the outdoor air; respectively the number of mesophilic aerobic bacteria and yeasts and molds. The measure of bacteria and fungi used is CFU (Colony Forming Units) per Petri dish. It is said that marine harbours are very polluted areas. The aim of study was the definition of mesophilic aerobic bacteria and yeasts and molds number, and the comparison of microorganisms number in air sampling areas.

A Comparison of Exact and Heuristic Approaches to Capital Budgeting

This paper summarizes and compares approaches to solving the knapsack problem and its known application in capital budgeting. The first approach uses deterministic methods and can be applied to small-size tasks with a single constraint. We can also apply commercial software systems such as the GAMS modelling system. However, because of NP-completeness of the problem, more complex problem instances must be solved by means of heuristic techniques to achieve an approximation of the exact solution in a reasonable amount of time. We show the problem representation and parameter settings for a genetic algorithm framework.

Restoration of Noisy Document Images with an Efficient Bi-Level Adaptive Thresholding

An effective approach for extracting document images from a noisy background is introduced. The entire scheme is divided into three sub- stechniques – the initial preprocessing operations for noise cluster tightening, introduction of a new thresholding method by maximizing the ratio of stan- dard deviations of the combined effect on the image to the sum of weighted classes and finally the image restoration phase by image binarization utiliz- ing the proposed optimum threshold level. The proposed method is found to be efficient compared to the existing schemes in terms of computational complexity as well as speed with better noise rejection.

CFD Simulation and Validation of Flow Pattern Transition Boundaries during Moderately Viscous Oil-Water Two-Phase Flow through Horizontal Pipeline

In the present study, computational fluid dynamics (CFD) simulation has been executed to investigate the transition boundaries of different flow patterns for moderately viscous oil-water (viscosity ratio 107, density ratio 0.89 and interfacial tension of 0.032 N/m.) two-phase flow through a horizontal pipeline with internal diameter and length of 0.025 m and 7.16 m respectively. Volume of Fluid (VOF) approach including effect of surface tension has been employed to predict the flow pattern. Geometry and meshing of the present problem has been drawn using GAMBIT and ANSYS FLUENT has been used for simulation. A total of 47037 quadrilateral elements are chosen for the geometry of horizontal pipeline. The computation has been performed by assuming unsteady flow, immiscible liquid pair, constant liquid properties, co-axial flow and a T-junction as entry section. The simulation correctly predicts the transition boundaries of wavy stratified to stratified mixed flow. Other transition boundaries are yet to be simulated. Simulated data has been validated with our own experimental results.

Optimization Based Tuning of Autopilot Gains for a Fixed Wing UAV

Unmanned Aerial Vehicles (UAVs) have gained tremendous importance, in both Military and Civil, during first decade of this century. In a UAV, onboard computer (autopilot) autonomously controls the flight and navigation of the aircraft. Based on the aircraft role and flight envelope, basic to complex and sophisticated controllers are used to stabilize the aircraft flight parameters. These controllers constitute the autopilot system for UAVs. The autopilot systems, most commonly, provide lateral and longitudinal control through Proportional-Integral-Derivative (PID) controllers or Phase-lead or Lag Compensators. Various techniques are commonly used to ‘tune’ gains of these controllers. Some techniques used are, in-flight step-by-step tuning, software-in-loop or hardware-in-loop tuning methods. Subsequently, numerous in-flight tests are required to actually ‘fine-tune’ these gains. However, an optimization-based tuning of these PID controllers or compensators, as presented in this paper, can greatly minimize the requirement of in-flight ‘tuning’ and substantially reduce the risks and cost involved in flight-testing.