Solar Thermal Aquaculture System Controller Based on Artificial Neural Network

Temperature is one of the most principle factors affects aquaculture system. It can cause stress and mortality or superior environment for growth and reproduction. This paper presents the control of pond water temperature using artificial intelligence technique. The water temperature is very important parameter for shrimp growth. The required temperature for optimal growth is 34oC, if temperature increase up to 38oC it cause death of the shrimp, so it is important to control water temperature. Solar thermal water heating system is designed to supply an aquaculture pond with the required hot water in Mersa Matruh in Egypt. Neural networks are massively parallel processors that have the ability to learn patterns through a training experience. Because of this feature, they are often well suited for modeling complex and non-linear processes such as those commonly found in the heating system. Artificial neural network is proposed to control water temperature due to Artificial intelligence (AI) techniques are becoming useful as alternate approaches to conventional techniques. They have been used to solve complicated practical problems. Moreover this paper introduces a complete mathematical modeling and MATLAB SIMULINK model for the aquaculture system. The simulation results indicate that, the control unit success in keeping water temperature constant at the desired temperature by controlling the hot water flow rate.

Stabilization of Angular-Shaped Riprap under Overtopping Flows

Riprap is mostly used to prevent erosion by flows down the steep slopes in river engineering. A total of 53 stability tests performed on angular riprap with a median stone size ranging from 15 to 278 mm and slope ranging from 1 to 40% are used in this study. The existing equations for the prediction of medium size of angular stones are checked for their accuracy using the available data. Predictions of median size using these equations are not satisfactory and results show deviation by more than ±20% from the observed values. A multivariable power regression analysis is performed to propose a new equation relating the median size with unit discharge, bed slope, riprap thickness and coefficient of uniformity. The proposed relationship satisfactorily predicts the median angular stone size with ±20% error. Further, the required size of the rounded stone is more than the angular stone for the same unit discharge and the ratio increases with unit discharge and also with embankment slope of the riprap.

Zigbee Based Wireless Energy Surveillance System for Energy Savings

In this paper, zigbee communication based wireless energy surveillance system is presented. The proposed system consists of multiple energy surveillance devices and an energy surveillance monitor. Each different standby power-off value of electric device is set automatically by using learning function of energy surveillance device. Thus adaptive standby power-off function provides user convenience and it maximizes the energy savings. Also, power consumption monitoring function is helpful to reduce inefficient energy consumption in home. The zigbee throughput simulator is designed to evaluate minimum transmission power and maximum allowable information quantity in the proposed system. The test result of prototype has been satisfied all the requirements. The proposed system has confirmed that can be used as an intelligent energy surveillance system for energy savings in home or office.

Model of High-Speed Train Energy Consumption

In the hardening energy context, the transport sector which constitutes a large worldwide energy demand has to be improving for decrease energy demand and global warming impacts. In a controversial situation where subsists an increasing demand for long-distance and high-speed travels, high-speed trains offer many advantages, as consuming significantly less energy than road or air transports. At the project phase of new rail infrastructures, it is nowadays important to characterize accurately the energy that will be induced by its operation phase, in addition to other more classical criteria as construction costs and travel time. Current literature consumption models used to estimate railways operation phase are obsolete or not enough accurate for taking into account the newest train or railways technologies. In this paper, an updated model of consumption for high-speed is proposed, based on experimental data obtained from full-scale tests performed on a new high-speed line. The assessment of the model is achieved by identifying train parameters and measured power consumptions for more than one hundred train routes. Perspectives are then discussed to use this updated model for accurately assess the energy impact of future railway infrastructures.

Effect of Processing on Sensory Characteristics and Chemical Composition of Cottonseed (Gossypium hirsutum) and Its Extract

The seeds of cotton (Gossypium hirsutum) fall among the lesser known oil seeds. Cottonseeds are not normally consumed in their natural state due to their gossypol content, an antinutrient. The effect of processing on the sensory characteristics and chemical composition of cottonseed and its extract was studied by subjecting the cottonseed extract to heat treatment (boiling) and the cottonseed to fermentation. The cottonseed extract was boiled using the open pot and the pressure pot for 30 minutes respectively. The fermentation of the cottonseed was carried out for 6 days with samples withdrawn at intervals of 2 days. The extract and fermented samples were subjected to chemical analysis and sensory evaluated for colour, aroma, taste, mouth feel, appearance and overallacceptability. The open pot sample was more preferred. Fermentation for 6 days resulted into a significant reduction in gossypol level of the cottonseed; however, sample fermented for 2 days was most preferred.

Drag models for Simulation Gas-Solid Flow in the Bubbling Fluidized Bed of FCC Particles

In the current work, a numerical parametric study was performed in order to model the fluid mechanics in the riser of a bubbling fluidized bed (BFB). The gas-solid flow was simulated by mean of a multi-fluid Eulerian model incorporating the kinetic theory for solid particles. The bubbling fluidized bed was simulated two dimensionally by mean of a Computational Fluid Dynamic (CFD) commercial software package, Fluent. The effects of using different inter-phase drag function (the drag model of Gidaspow, Syamlal and O-Brien and the EMMS drag model) on the model predictions were evaluated and compared. The results showed that the drag models of Gidaspow and Syamlal and O-Brien overestimated the drag force for the FCC particles and predicted a greater bed expansion in comparison to the EMMS drag model.

Molecular Docking Studies of Mycobacterium tuberculosis RNA Polymerase β Subunit (rpoB) Receptor

Tuberculosis (TB) is a bacterial infectious disease caused by the obligate human pathogen, Mycobacterium tuberculosis. Multidrug-resistant tuberculosis (MDR-TB) is a global reality that threatens tuberculosis control. Resistance to antibiotic Rifampicin, occurs in 95% of cases through nucleotide substitutions in an 81-bp core region of the rpoB i.e; beta subunit of DNA dependant RNA polymerase. In this paper, we studied the Rifampicin-rpoB receptor interactions In silico. First, homology modeling was performed to obtain the three dimensional structure of Mycobacterium rpoB. Sixty analogs of Rifampicin were prepared using Marvin sketch software. Both original Rifampicin and the analogs were docked with rpoB and energy values were obtained. Out of sixty analogs, 43 analogs had lesser energy values than conventional Rifampicin and hence are predicted to have greater binding affinity to rpoB. Thus, this study offers a route for the development of Rifampicin analogs against multi drug resistant Mycobacterium rpoB.

The Concentration Effects for the Adsorption Behavior of Heptyl Viologen Cation Radicals on Indium-Tin-Oxide Electrode Surfaces

In situ observation of absorption spectral change of heptil viologen cation radical (HV+.) was performed by slab optical waveguide (SOWG) spectroscopy utilizing indium-tin-oxide (ITO) electrodes. Synchronizing with electrochemical techniques, we observed the adsorption process of HV+.on the ITO electrode. In this study, we carried out the ITO-SOWG observations using KBr aqueous solution containing different concentration of HV to investigate the concentration dependent spectral change. A few specific absorption bands, which indicated HV+.existed as both monomer and dimer on ITO electrode surface with a monolayer or a few layers deposition, were observed in UV-visible region. The change in the peak position of the absorption spectra from adsorption species of HV+. were correlated with the concentration of HV as well as the electrode potential.

The Estimate Rate of Permanent Flow of a Liquid Simulating Blood by Doppler Effect

To improve the characterization of blood flows, we propose a method which makes it possible to use the spectral analysis of the Doppler signals. Our calculation induces a reasonable approximation, the error made on estimated speed reflects the fact that speed depends on the flow conditions as well as on measurement parameters like the bore and the volume flow rate. The estimate of the Doppler signal frequency enables us to determine the maximum Doppler frequencie Fd max as well as the maximum flow speed. The results show that the difference between the estimated frequencies ( Fde ) and the Doppler frequencies ( Fd ) is small, this variation tends to zero for important θ angles and it is proportional to the diameter D. The description of the speed of friction and the coefficient of friction justify the error rate obtained.

A Generic Approach to Achieve Optimal Server Consolidation by Using Existing Servers in Virtualized Data Center

Virtualization-based server consolidation has been proven to be an ideal technique to solve the server sprawl problem by consolidating multiple virtualized servers onto a few physical servers leading to improved resource utilization and return on investment. In this paper, we solve this problem by using existing servers, which are heterogeneous and diversely preferred by IT managers. Five practical consolidation rules are introduced, and a decision model is proposed to optimally allocate source services to physical target servers while maximizing the average resource utilization and preference value. Our model can be regarded as a multi-objective multi-dimension bin-packing (MOMDBP) problem with constraints, which is strongly NP-hard. An improved grouping generic algorithm (GGA) is introduced for the problem. Extensive simulations were performed and the results are given.

Performance Verification of Seismic Design Codes for RC Frames

In this study, a frame work for verification of famous seismic codes is utilized. To verify the seismic codes performance, damage quantity of RC frames is compared with the target performance. Due to the randomness property of seismic design and earthquake loads excitation, in this paper, fragility curves are developed. These diagrams are utilized to evaluate performance level of structures which are designed by the seismic codes. These diagrams further illustrate the effect of load combination and reduction factors of codes on probability of damage exceedance. Two types of structures; very high important structures with high ductility and medium important structures with intermediate ductility are designed by different seismic codes. The Results reveal that usually lower damage ratio generate lower probability of exceedance. In addition, the findings indicate that there are buildings with higher quantity of bars which they have higher probability of damage exceedance. Life-cycle cost analysis utilized for comparison and final decision making process.

Identifying New Sequence Features for Exon-Intron Discrimination by Rescaled-Range Frameshift Analysis

For identifying the discriminative sequence features between exons and introns, a new paradigm, rescaled-range frameshift analysis (RRFA), was proposed. By RRFA, two new sequence features, the frameshift sensitivity (FS) and the accumulative penta-mer complexity (APC), were discovered which were further integrated into a new feature of larger scale, the persistency in anti-mutation (PAM). The feature-validation experiments were performed on six model organisms to test the power of discrimination. All the experimental results highly support that FS, APC and PAM were all distinguishing features between exons and introns. These identified new sequence features provide new insights into the sequence composition of genes and they have great potentials of forming a new basis for recognizing the exonintron boundaries in gene sequences.

Comparison of Stochastic Point Process Models of Rainfall in Singapore

Extensive rainfall disaggregation approaches have been developed and applied in climate change impact studies such as flood risk assessment and urban storm water management.In this study, five rainfall models that were capable ofdisaggregating daily rainfall data into hourly one were investigated for the rainfall record in theChangi Airport, Singapore. The objectives of this study were (i) to study the temporal characteristics of hourly rainfall in Singapore, and (ii) to evaluate the performance of variousdisaggregation models. The used models included: (i) Rectangular pulse Poisson model (RPPM), (ii) Bartlett-Lewis Rectangular pulse model (BLRPM), (iii) Bartlett-Lewis model with 2 cell types (BL2C), (iv) Bartlett-Lewis Rectangular with cell depth distribution dependent on duration (BLRD), and (v) Neyman-Scott Rectangular pulse model (NSRPM). All of these models werefitted using hourly rainfall data ranging from 1980 to 2005 (which was obtained from Changimeteorological station).The study results indicated that the weight scheme of inversely proportional variance could deliver more accurateoutputs for fitting rainfall patterns in tropical areas, and BLRPM performedrelatively better than other disaggregation models.

Validation of the WAsP Model for a Terrain Surrounded by Mountainous Region

The problems associated with wind predictions of WAsP model in complex terrain are already the target of several studies in the last decade. In this paper, the influence of surrounding orography on accuracy of wind data analysis of a train is investigated. For the case study, a site with complex surrounding orography is considered. This site is located in Manjil, one of the windiest cities of Iran. For having precise evaluation of wind regime in the site, one-year wind data measurements from two metrological masts are used. To validate the obtained results from WAsP, the cross prediction between each mast is performed. The analysis reveals that WAsP model can estimate the wind speed behavior accurately. In addition, results show that this software can be used for predicting the wind regime in flat sites with complex surrounding orography.

Synthesis and Reactions of Sulphone Hydrazides

The chemistry of sulphone hydrazide has gained increase interest in both synthetic organic chemistry and biological fields and has considerable value. The therapeutic importance of these compounds is the attractive force to continue research in such a point. The present review covers the literature up to date for the synthesis, reactions and applications of such compounds.

Measuring Cognitive Load - A Solution to Ease Learning of Programming

Learning programming is difficult for many learners. Some researches have found that the main difficulty relates to cognitive load. Cognitive overload happens in programming due to the nature of the subject which is intrinisicly over-bearing on the working memory. It happens due to the complexity of the subject itself. The problem is made worse by the poor instructional design methodology used in the teaching and learning process. Various efforts have been proposed to reduce the cognitive load, e.g. visualization softwares, part-program method etc. Use of many computer based systems have also been tried to tackle the problem. However, little success has been made to alleviate the problem. More has to be done to overcome this hurdle. This research attempts at understanding how cognitive load can be managed so as to reduce the problem of overloading. We propose a mechanism to measure the cognitive load during pre instruction, post instruction and in instructional stages of learning. This mechanism is used to help the instruction. As the load changes the instruction is made to adapt itself to ensure cognitive viability. This mechanism could be incorporated as a sub domain in the student model of various computer based instructional systems to facilitate the learning of programming.

Linear Instability of Wake-Shear Layers in Two-Phase Shallow Flows

Linear stability analysis of wake-shear layers in twophase shallow flows is performed in the present paper. Twodimensional shallow water equations are used in the analysis. It is assumed that the fluid contains uniformly distributed solid particles. No dynamic interaction between the carrier fluid and particles is expected in the initial moment. The stability calculations are performed for different values of the particle loading parameter and two other parameters which characterize the velocity ratio and the velocity deficit. The results show that the particle loading parameter has a stabilizing effect on the flow while the increase in the velocity ratio or in the velocity deficit destabilizes the flow.

Effect of Retinoic Acid on Fetus Reproductive Organ Mice (Mus musculus) Swiss Webster

Retinoic acid is like a steroid hormone that plays a role in embryo formation, proliferation of spermatogonia cells, ephitelial cells differentiation and organogenesis. Retinoic acid can influences seminiferous tubule formation during embryonic testis development and also play a role in the regulation of ovarian function and female reproductive tract by suppressing the hormones FSH receptor expression. The excessive use of retinoic acid caused abnormalities in the fetus. The result showed that there is the influence of retinoic acid on the developmet of mice fetal testes, for examples disruption of the formation of seminiferous tubules and tubules seemed to be hollow, spermatogonia cells are relatively few in number and caused Leydig cells count relatively more. While in the female fetus does not caused the formation of primordial follicles and disrupted the development of germinal ephitelial cells of fetal ovaries of female mice (mus musculus) Swiss Webster.

The Splitting Upwind Schemes for Spectral Action Balance Equation

The spectral action balance equation is an equation that used to simulate short-crested wind-generated waves in shallow water areas such as coastal regions and inland waters. This equation consists of two spatial dimensions, wave direction, and wave frequency which can be solved by finite difference method. When this equation with dominating convection term are discretized using central differences, stability problems occur when the grid spacing is chosen too coarse. In this paper, we introduce the splitting upwind schemes for avoiding stability problems and prove that it is consistent to the upwind scheme with same accuracy. The splitting upwind schemes was adopted to split the wave spectral action balance equation into four onedimensional problems, which for each small problem obtains the independently tridiagonal linear systems. For each smaller system can be solved by direct or iterative methods at the same time which is very fast when performed by a multi-processor computer.

Towards Cloud Computing Anatomy

Cloud Computing has recently emerged as a compelling paradigm for managing and delivering services over the internet. The rise of Cloud Computing is rapidly changing the landscape of information technology, and ultimately turning the longheld promise of utility computing into a reality. As the development of Cloud Computing paradigm is speedily progressing, concepts, and terminologies are becoming imprecise and ambiguous, as well as different technologies are interfering. Thus, it becomes crucial to clarify the key concepts and definitions. In this paper, we present the anatomy of Cloud Computing, covering its essential concepts, prominent characteristics, its affects, architectural design and key technologies. We differentiate various service and deployment models. Also, significant challenges and risks need are tackled in order to guarantee the long-term success of Cloud Computing. The aim of this paper is to provide a better understanding of the anatomy of Cloud Computing and pave the way for further research in this area.