VoIP Source Model based on the Hyperexponential Distribution

In this paper we present a statistical analysis of Voice over IP (VoIP) packet streams produced by the G.711 voice coder with voice activity detection (VAD). During telephone conversation, depending whether the interlocutor speaks (ON) or remains silent (OFF), packets are produced or not by a voice coder. As index of dispersion for both ON and OFF times distribution was greater than one, we used hyperexponential distribution for approximation of streams duration. For each stage of the hyperexponential distribution, we tested goodness of our fits using graphical methods, we calculated estimation errors, and performed Kolmogorov-Smirnov test. Obtained results showed that the precise VoIP source model can be based on the five-state Markov process.

A Semantic Web Based Ontology in the Financial Domain

The paper describes design of an ontology in the financial domain for mutual funds. The design of this ontology consists of four steps, namely, specification, knowledge acquisition, implementation and semantic query. Specification includes a description of the taxonomy and different types mutual funds and their scope. Knowledge acquisition involves the information extraction from heterogeneous resources. Implementation describes the conceptualization and encoding of this data. Finally, semantic query permits complex queries to integrated data, mapping of these database entities to ontological concepts.

Energy Consumption and Surface Finish Analysis of Machining Ti6Al4V

Greenhouse gases (GHG) emissions impose major threat to global warming potential (GWP). Unfortunately manufacturing sector is one of the major sources that contribute towards the rapid increase in greenhouse gases (GHG) emissions. In manufacturing sector electric power consumption is the major driver that influences CO2 emission. Titanium alloys are widely utilized in aerospace, automotive and petrochemical sectors because of their high strength to weight ratio and corrosion resistance. Titanium alloys are termed as difficult to cut materials because of their poor machinability rating. The present study analyzes energy consumption during cutting with reference to material removal rate (MRR). Surface roughness was also measured in order to optimize energy consumption.

Ant Colony Optimization for Feature Subset Selection

The Ant Colony Optimization (ACO) is a metaheuristic inspired by the behavior of real ants in their search for the shortest paths to food sources. It has recently attracted a lot of attention and has been successfully applied to a number of different optimization problems. Due to the importance of the feature selection problem and the potential of ACO, this paper presents a novel method that utilizes the ACO algorithm to implement a feature subset search procedure. Initial results obtained using the classification of speech segments are very promising.

Smart Sustainable Cities: An Integrated Planning Approach towards Sustainable Urban Energy Systems, India

Cities denote instantaneously a challenge and an opportunity for climate change policy. Cities are the place where most energy services are needed because urbanization is closely linked to high population densities and concentration of economic activities and production (Urban energy demand). Consequently, it is critical to explain about the role of cities within the world-s energy systems and its correlation with the climate change issue. With more than half of the world-s population already living in urban areas, and that percentage expected to rise to 75 per cent by 2050, it is clear that the path to sustainable development must pass through cities. Cities expanding in size and population pose increased challenges to the environment, of which energy is part as a natural resource, and to the quality of life. Nowadays, most cities have already understood the importance of sustainability, both at their local scale as in terms of their contribution to sustainability at higher geographical scales. It requires the perception of a city as a complex and dynamic ecosystem, an open system, or cluster of systems, where the energy as well as the other natural resources is transformed to satisfy the needs of the different urban activities. In fact, buildings and transportation generally represent most of cities direct energy demand, i.e., between 60 per cent and 80 per cent of the overall consumption. Buildings, both residential and services are usually influenced by the local physical and social conditions. In terms of transport, the energy demand is also strongly linked with the specific characteristics of a city (urban mobility).The concept of a “smart city" builds on statistics as seven key axes of a city-s success in moving towards common platform (brain nerve)of sustainable urban energy systems. With the aforesaid knowledge, the authors have suggested a frame work to role of cities, as energy actors for smart city management. The authors have discusses the potential elements needed for energy in smart cities and also identified potential energy actions and relevant barriers. Furthermore, three levels of city smartness in cities actions to overcome market /institutional failures with a local approach are distinguished. The authors have made an attempt to conceive and implement concepts of city smartness by adopting the city or local government as nerve center through an integrated planning approach. Finally, concluding with recommendations for the organization of the Smart Sustainable Cities for positive changes of urban India.

Visualization of Sediment Thickness Variation for Sea Bed Logging using Spline Interpolation

This paper discusses on the use of Spline Interpolation and Mean Square Error (MSE) as tools to process data acquired from the developed simulator that shall replicate sea bed logging environment. Sea bed logging (SBL) is a new technique that uses marine controlled source electromagnetic (CSEM) sounding technique and is proven to be very successful in detecting and characterizing hydrocarbon reservoirs in deep water area by using resistivity contrasts. It uses very low frequency of 0.1Hz to 10 Hz to obtain greater wavelength. In this work the in house built simulator was used and was provided with predefined parameters and the transmitted frequency was varied for sediment thickness of 1000m to 4000m for environment with and without hydrocarbon. From series of simulations, synthetics data were generated. These data were interpolated using Spline interpolation technique (degree of three) and mean square error (MSE) were calculated between original data and interpolated data. Comparisons were made by studying the trends and relationship between frequency and sediment thickness based on the MSE calculated. It was found that the MSE was on increasing trends in the set up that has the presence of hydrocarbon in the setting than the one without. The MSE was also on decreasing trends as sediment thickness was increased and with higher transmitted frequency.

Real-Time Specific Weed Recognition System Using Histogram Analysis

Information on weed distribution within the field is necessary to implement spatially variable herbicide application. Since hand labor is costly, an automated weed control system could be feasible. This paper deals with the development of an algorithm for real time specific weed recognition system based on Histogram Analysis of an image that is used for the weed classification. This algorithm is specifically developed to classify images into broad and narrow class for real-time selective herbicide application. The developed system has been tested on weeds in the lab, which have shown that the system to be very effectiveness in weed identification. Further the results show a very reliable performance on images of weeds taken under varying field conditions. The analysis of the results shows over 95 percent classification accuracy over 140 sample images (broad and narrow) with 70 samples from each category of weeds.

Destination of the Solid Waste Generated at the Agricultural Products Wholesale Market in Brazil

The Brazilian Agricultural Products Wholesale Market fits well as example of residues generating system, reaching 750 metric tons per month of total residues, from which 600 metric tons are organic material and 150 metric tons are recyclable materials. Organic material is basically composed of fruit, vegetables and flowers leftovers from the products commercialization. The recyclable compounds are generate from packing material employed in the commercialization process. This research work devoted efforts in carrying quantitative analysis of the residues generated in the agricultural enterprise at its final destination. Data survey followed the directions implemented by the Residues Management Program issued by the agricultural enterprise. It was noticed from that analysis the necessity of changing the logistics applied to the recyclable material collecting process. However, composting process was elected as the organic compounds destination which is considered adequate for a material composed of significant percentage of organic matter far higher than wood, cardboard and plastics contents.

Efficient Hardware Realization of Truncated Multipliers using FPGA

Truncated multiplier is a good candidate for digital signal processing (DSP) applications including finite impulse response (FIR) and discrete cosine transform (DCT). Through truncated multiplier a significant reduction in Field Programmable Gate Array (FPGA) resources can be achieved. This paper presents for the first time a comparison of resource utilization of Spartan-3AN and Virtex-5 implementation of standard and truncated multipliers using Very High Speed Integrated Circuit Hardware Description Language (VHDL). The Virtex-5 FPGA shows significant improvement as compared to Spartan-3AN FPGA device. The Virtex-5 FPGA device shows better performance with a percentage ratio of number of occupied slices for standard to truncated multipliers is increased from 40% to 73.86% as compared to Spartan- 3AN is decreased from 68.75% to 58.78%. Results show that the anomaly in Spartan-3AN FPGA device average connection and maximum pin delay have been efficiently reduced in Virtex-5 FPGA device.

The Influence of the Commons Structure Modification on the Active Power Losses Allocation

The tracing methods determine the contribution the power system sources have in their supplying. These methods can be used to assess the transmission prices, but also to recover the transmission fixed cost. In this paper is presented the influence of the modification of commons structure has on the specific price of transfer and on active power losses. The authors propose a power losses allocation method, based on Kirschen-s method. The system operator must make use of a few basic principles about allocation. The only necessary information is the power flows on system branches and the modifications applied to power system buses. In order to illustrate this method, the 25-bus test system is used, elaborated within the Electrical Power Engineering Department, from Timisoara, Romania.

A Note on the Numerical Solution of Singular Integral Equations of Cauchy Type

This manuscript presents a method for the numerical solution of the Cauchy type singular integral equations of the first kind, over a finite segment which is bounded at the end points of the finite segment. The Chebyshev polynomials of the second kind with the corresponding weight function have been used to approximate the density function. The force function is approximated by using the Chebyshev polynomials of the first kind. It is shown that the numerical solution of characteristic singular integral equation is identical with the exact solution, when the force function is a cubic function. Moreover, it also shown that this numerical method gives exact solution for other singular integral equations with degenerate kernels.

U.S. Supreme Court Decision Making in the Area of Religion, 1987-2011

There are many views on how human decision makers behave. In this work, the Justices of the United States Supreme Court will be viewed in terms of constrained maximization and cognitivecybernetic theory. This paper will integrate research in such fields as law, political science, psychology, economics and decision making theory. It will be argued that due to its heavy workload, the Supreme Court is forced to make decisions in a boundedly rational manner. The ideas and theory put forward here will be tested in the area of the Court’s decisions involving religion. Therefore, the cases involving the U.S. Constitution’s Free Exercise Clause and Establishment Clause will be analyzed. Also, variables such as the U.S. government’s involvement in these cases will be considered. The years to be studied will be 1987-2011.

Students- Perception of the Evaluation System in Architecture Studios

Architecture education was based on apprenticeship models and its nature has not changed much during long period but the Source of changes was its evaluation process and system. It is undeniable that art and architecture education is completely based on transmitting knowledge from instructor to students. In contrast to other majors this transmitting is by iteration and practice and studio masters try to control the design process and improving skills in the form of supervision and criticizing. Also the evaluation will end by giving marks to students- achievements. Therefore the importance of the evaluation and assessment role is obvious and it is not irrelevant to say that if we want to know about the architecture education system, we must first study its assessment procedures. The evolution of these changes in western countries has literate and documented well. However it seems that this procedure has unregarded in Malaysia and there is a severe lack of research and documentation in this area. Malaysia as an under developing and multicultural country which is involved different races and cultures is a proper origin for scrutinizing and understanding the evaluation systems and acceptability amount of current implemented models to keep the evaluation and assessment procedure abreast with needs of different generations, cultures and even genders. This paper attempts to answer the questions of how evaluation and assessments are performed and how students perceive this evaluation system in the context Malaysia. The main advantage of this work is that it contributes in international debate on evaluation model.

Learning an Overcomplete Dictionary using a Cauchy Mixture Model for Sparse Decay

An algorithm for learning an overcomplete dictionary using a Cauchy mixture model for sparse decomposition of an underdetermined mixing system is introduced. The mixture density function is derived from a ratio sample of the observed mixture signals where 1) there are at least two but not necessarily more mixture signals observed, 2) the source signals are statistically independent and 3) the sources are sparse. The basis vectors of the dictionary are learned via the optimization of the location parameters of the Cauchy mixture components, which is shown to be more accurate and robust than the conventional data mining methods usually employed for this task. Using a well known sparse decomposition algorithm, we extract three speech signals from two mixtures based on the estimated dictionary. Further tests with additive Gaussian noise are used to demonstrate the proposed algorithm-s robustness to outliers.

Health Risk Assessment of PET Bottles in GCC

Bottle water is getting very popular all through the world; especially in the gulf countries as the main source of drinking water. However, concerns over leaching of toxic chemicals are increasing. In this study, a health risk assessment was conducted in accordance with the guidelines indicated by United States Environmental Protection Agency (USEPA). It is conducted based on leaching of Diethyl Phthalate (DEP) from Polyethylene terephthalate (PET). The toxicity and exposure assessment of diethyl phthalate was conducted to characterize its risk on human health. Risk management is also discussed.

Towards an Effective Reputation Assessment Process in Peer-to-Peer Systems

The need for reputation assessment is particularly strong in peer-to-peer (P2P) systems because the peers' personal site autonomy is amplified by the inherent technological decentralization of the environment. However, the decentralization notion makes the problem of designing a peer-to-peer based reputation assessment substantially harder in P2P networks than in centralized settings.Existing reputation systems tackle the reputation assessment process in an ad-hoc manner. There is no systematic and coherent way to derive measures and analyze the current reputation systems. In this paper, we propose a reputation assessment process and use it to classify the existing reputation systems. Simulation experiments are conducted and focused on the different methods in selecting the recommendation sources and retrieving the recommendations. These two phases can contribute significantly to the overall performance due to communication cost and coverage.

Effect of Oxygen on Biochar Yield and Properties

Air infiltration in mass scale industrial applications of bio char production is inevitable. The presence of oxygen during the carbonization process is detrimental to the production of biochar yield and properties. The experiment was carried out on several wood species in a fixed-bed pyrolyser under various fractions of oxygen ranging from 0% to 11% by varying nitrogen and oxygen composition in the pyrolysing gas mixtures at desired compositions. The bed temperature and holding time were also varied. Process optimization was carried out by Response Surface Methodology (RSM) by employing Central Composite Design (CCD) using Design Expert 6.0 Software. The effect of oxygen ratio and holding time on biochar yield within the range studied were statistically significant. From the analysis result, optimum condition of 15.2% biochar yield of mangrove wood was predicted at pyrolysis temperature of 403 oC, oxygen percentage of 2.3% and holding time of two hours. This prediction agreed well with the experiment finding of 15.1% biochar yield.

Investment Prediction Using Simulation

A business case is a proposal for an investment initiative to satisfy business and functional requirements. The business case provides the foundation for tactical decision making and technology risk management. It helps to clarify how the organization will use its resources in the best way by providing justification for investment of resources. This paper describes how simulation was used for business case benefits and return on investment for the procurement of 8 production machines. With investment costs of about 4.7 million dollars and annual operating costs of about 1.3 million, we needed to determine if the machines would provide enough cost savings and cost avoidance. We constructed a model of the existing factory environment consisting of 8 machines and subsequently, we conducted average day simulations with light and heavy volumes to facilitate planning decisions required to be documented and substantiated in the business case.

Decoupled Scheduling in Meta Environment

Grid scheduling is the process of mapping grid jobs to resources over multiple administrative domains. Traditionally, application-level schedulers have been tightly integrated with the application itself and were not easily applied to other applications. This design is generic that decouples the scheduler core (the search procedure) from the application-specific (e.g. application performance models) and platform-specific (e.g. collection of resource information) components used by the search procedure. In this decoupled approach the application details are not revealed completely to broker, but customer will give the application to resource provider for execution. In a decoupled approach, apart from scheduling, the resource selection can be performed independently in order to achieve scalability.

Development of Manufacturing Simulation Model for Semiconductor Fabrication

This research presents the development of simulation modeling for WIP management in semiconductor fabrication. Manufacturing simulation modeling is needed for productivity optimization analysis due to the complex process flows involved more than 35 percent re-entrance processing steps more than 15 times at same equipment. Furthermore, semiconductor fabrication required to produce high product mixed with total processing steps varies from 300 to 800 steps and cycle time between 30 to 70 days. Besides the complexity, expansive wafer cost that potentially impact the company profits margin once miss due date is another motivation to explore options to experiment any analysis using simulation modeling. In this paper, the simulation model is developed using existing commercial software platform AutoSched AP, with customized integration with Manufacturing Execution Systems (MES) and Advanced Productivity Family (APF) for data collections used to configure the model parameters and data source. Model parameters such as processing steps cycle time, equipment performance, handling time, efficiency of operator are collected through this customization. Once the parameters are validated, few customizations are made to ensure the prior model is executed. The accuracy for the simulation model is validated with the actual output per day for all equipments. The comparison analysis from result of the simulation model compared to actual for achieved 95 percent accuracy for 30 days. This model later was used to perform various what if analysis to understand impacts on cycle time and overall output. By using this simulation model, complex manufacturing environment like semiconductor fabrication (fab) now have alternative source of validation for any new requirements impact analysis.