Spread Spectrum Code Estimationby Particle Swarm Algorithm

In the context of spectrum surveillance, a new method to recover the code of spread spectrum signal is presented, while the receiver has no knowledge of the transmitter-s spreading sequence. In our previous paper, we used Genetic algorithm (GA), to recover spreading code. Although genetic algorithms (GAs) are well known for their robustness in solving complex optimization problems, but nonetheless, by increasing the length of the code, we will often lead to an unacceptable slow convergence speed. To solve this problem we introduce Particle Swarm Optimization (PSO) into code estimation in spread spectrum communication system. In searching process for code estimation, the PSO algorithm has the merits of rapid convergence to the global optimum, without being trapped in local suboptimum, and good robustness to noise. In this paper we describe how to implement PSO as a component of a searching algorithm in code estimation. Swarm intelligence boasts a number of advantages due to the use of mobile agents. Some of them are: Scalability, Fault tolerance, Adaptation, Speed, Modularity, Autonomy, and Parallelism. These properties make swarm intelligence very attractive for spread spectrum code estimation. They also make swarm intelligence suitable for a variety of other kinds of channels. Our results compare between swarm-based algorithms and Genetic algorithms, and also show PSO algorithm performance in code estimation process.

A Servo Control System Using the Loop Shaping Design Procedure

This paper describes an expanded system for a servo system design by using the Loop Shaping Design Procedure (LSDP). LSDP is one of the H∞ design procedure. By conducting Loop Shaping with a compensator and robust stabilization to satisfy the index function, we get the feedback controller that makes the control system stable. In this paper, we propose an expanded system for a servo system design and apply to the DC motor. The proposed method performs well in the DC motor positioning control. It has no steady-state error in the disturbance response and it has robust stability.

Improved Asymptotic Stability Analysis for Lure Systems with Neutral Type and Time-varying Delays

This paper investigates the problem of absolute stability and robust stability of a class of Lur-e systems with neutral type and time-varying delays. By using Lyapunov direct method and linear matrix inequality technique, new delay-dependent stability criteria are obtained and formulated in terms of linear matrix inequalities (LMIs) which are easy to check the stability of the considered systems. To obtain less conservative stability conditions, an operator is defined to construct the Lyapunov functional. Also, the free weighting matrices approach combining a matrix inequality technique is used to reduce the entailed conservativeness. Numerical examples are given to indicate significant improvements over some existing results.

Robust Cerebellar Model Articulation Controller Design for Flight Control Systems

This paper presents a robust proportionalderivative (PD) based cerebellar model articulation controller (CMAC) for vertical take-off and landing flight control systems. Successful on-line training and recalling process of CMAC accompanying the PD controller is developed. The advantage of the proposed method is mainly the robust tracking performance against aerodynamic parametric variation and external wind gust. The effectiveness of the proposed algorithm is validated through the application of a vertical takeoff and landing aircraft control system.

Using HMM-based Classifier Adapted to Background Noises with Improved Sounds Features for Audio Surveillance Application

Discrimination between different classes of environmental sounds is the goal of our work. The use of a sound recognition system can offer concrete potentialities for surveillance and security applications. The first paper contribution to this research field is represented by a thorough investigation of the applicability of state-of-the-art audio features in the domain of environmental sound recognition. Additionally, a set of novel features obtained by combining the basic parameters is introduced. The quality of the features investigated is evaluated by a HMM-based classifier to which a great interest was done. In fact, we propose to use a Multi-Style training system based on HMMs: one recognizer is trained on a database including different levels of background noises and is used as a universal recognizer for every environment. In order to enhance the system robustness by reducing the environmental variability, we explore different adaptation algorithms including Maximum Likelihood Linear Regression (MLLR), Maximum A Posteriori (MAP) and the MAP/MLLR algorithm that combines MAP and MLLR. Experimental evaluation shows that a rather good recognition rate can be reached, even under important noise degradation conditions when the system is fed by the convenient set of features.

Implementation of an Innovative Simplified Sliding Mode Observer-Based Robust Fault Detection in a Drum Boiler System

One of the robust fault detection filter (RFDF) designing method is based on sliding-mode theory. The main purpose of our study is to introduce an innovative simplified reference residual model generator to formulate the RFDF as a sliding-mode observer without any manipulation package or transformation matrix, through which the generated residual signals can be evaluated. So the proposed design is more explicit and requires less design parameters in comparison with approaches requiring changing coordinates. To the best author's knowledge, this is the first time that the sliding mode technique is applied to detect actuator and sensor faults in a real boiler. The designing procedure is proposed in a drum boiler in Synvendska Kraft AB Plant in Malmo, Sweden as a multivariable and strongly coupled system. It is demonstrated that both sensor and actuator faults can robustly be detected. Also sensor faults can be diagnosed and isolated through this method.

Sliding-Mode Control of a Permanent-Magnet Synchronous Motor with Uncertainty Estimation

In this paper, the application of sliding-mode control to a permanent-magnet synchronous motor (PMSM) is presented. The control design is based on a generic mathematical model of the motor. Some dynamics of the motor and of the power amplification stage remain unmodelled. This model uncertainty is estimated in realtime. The estimation is based on the differentiation of measured signals using the ideas of robust exact differentiator (RED). The control law is implemented on an industrial servo drive. Simulations and experimental results are presented and compared to the same control strategy without uncertainty estimation. It turns out that the proposed concept is superior to the same control strategy without uncertainty estimation especially in the case of non-smooth reference signals.

A Method for Improving Dental Crown Fit-Increasing the Robustness

The introduction of mass-customization has enabled new ways to treat patients within medicine. However, the introduction of industrialized treatments has also meant new obstacles. The purpose of this study was to introduce and theoretically test a method for improving dental crown fit. The optimization method allocates support points in order to check the final variation for dental crowns. Three different types of geometries were tested and compared. The three geometries were also divided into three sub-geometries: Current method, Optimized method and Feasible method. The Optimized method, using the whole surface for support points, provided the best results. The results support the objective of the study. It also seems that the support optimization method can dramatically improve the robustness of dental crown treatments.

A Dual Digital-Image Watermarking Technique

Image watermarking has become an important tool for intellectual property protection and authentication. In this paper a watermarking technique is suggested that incorporates two watermarks in a host image for improved protection and robustness. A watermark, in form of a PN sequence (will be called the secondary watermark), is embedded in the wavelet domain of a primary watermark before being embedded in the host image. The technique has been tested using Lena image as a host and the camera man as the primary watermark. The embedded PN sequence was detectable through correlation among other five sequences where a PSNR of 44.1065 dB was measured. Furthermore, to test the robustness of the technique, the watermarked image was exposed to four types of attacks, namely compression, low pass filtering, salt and pepper noise and luminance change. In all cases the secondary watermark was easy to detect even when the primary one is severely distorted.

Contour Estimation in Synthetic and Real Weld Defect Images based on Maximum Likelihood

This paper describes a novel method for automatic estimation of the contours of weld defect in radiography images. Generally, the contour detection is the first operation which we apply in the visual recognition system. Our approach can be described as a region based maximum likelihood formulation of parametric deformable contours. This formulation provides robustness against the poor image quality, and allows simultaneous estimation of the contour parameters together with other parameters of the model. Implementation is performed by a deterministic iterative algorithm with minimal user intervention. Results testify for the very good performance of the approach especially in synthetic weld defect images.

Comparison among Various Question Generations for Decision Tree Based State Tying in Persian Language

Performance of any continuous speech recognition system is highly dependent on performance of the acoustic models. Generally, development of the robust spoken language technology relies on the availability of large amounts of data. Common way to cope with little data for training each state of Markov models is treebased state tying. This tying method applies contextual questions to tie states. Manual procedure for question generation suffers from human errors and is time consuming. Various automatically generated questions are used to construct decision tree. There are three approaches to generate questions to construct HMMs based on decision tree. One approach is based on misrecognized phonemes, another approach basically uses feature table and the other is based on state distributions corresponding to context-independent subword units. In this paper, all these methods of automatic question generation are applied to the decision tree on FARSDAT corpus in Persian language and their results are compared with those of manually generated questions. The results show that automatically generated questions yield much better results and can replace manually generated questions in Persian language.

Robust Artificial Neural Network Architectures

Many artificial intelligence (AI) techniques are inspired by problem-solving strategies found in nature. Robustness is a key feature in many natural systems. This paper studies robustness in artificial neural networks (ANNs) and proposes several novel, nature inspired ANN architectures. The paper includes encouraging results from experimental studies on these networks showing increased robustness.

Binarization of Text Region based on Fuzzy Clustering and Histogram Distribution in Signboards

In this paper, we present a novel approach to accurately detect text regions including shop name in signboard images with complex background for mobile system applications. The proposed method is based on the combination of text detection using edge profile and region segmentation using fuzzy c-means method. In the first step, we perform an elaborate canny edge operator to extract all possible object edges. Then, edge profile analysis with vertical and horizontal direction is performed on these edge pixels to detect potential text region existing shop name in a signboard. The edge profile and geometrical characteristics of each object contour are carefully examined to construct candidate text regions and classify the main text region from background. Finally, the fuzzy c-means algorithm is performed to segment and detected binarize text region. Experimental results show that our proposed method is robust in text detection with respect to different character size and color and can provide reliable text binarization result.

Fuzzy Logic Approach to Robust Regression Models of Uncertain Medical Categories

Dichotomization of the outcome by a single cut-off point is an important part of various medical studies. Usually the relationship between the resulted dichotomized dependent variable and explanatory variables is analyzed with linear regression, probit regression or logistic regression. However, in many real-life situations, a certain cut-off point dividing the outcome into two groups is unknown and can be specified only approximately, i.e. surrounded by some (small) uncertainty. It means that in order to have any practical meaning the regression model must be robust to this uncertainty. In this paper, we show that neither the beta in the linear regression model, nor its significance level is robust to the small variations in the dichotomization cut-off point. As an alternative robust approach to the problem of uncertain medical categories, we propose to use the linear regression model with the fuzzy membership function as a dependent variable. This fuzzy membership function denotes to what degree the value of the underlying (continuous) outcome falls below or above the dichotomization cut-off point. In the paper, we demonstrate that the linear regression model of the fuzzy dependent variable can be insensitive against the uncertainty in the cut-off point location. In the paper we present the modeling results from the real study of low hemoglobin levels in infants. We systematically test the robustness of the binomial regression model and the linear regression model with the fuzzy dependent variable by changing the boundary for the category Anemia and show that the behavior of the latter model persists over a quite wide interval.

A New Robust Stability Criterion for Dynamical Neural Networks with Mixed Time Delays

In this paper, we investigate the problem of the existence, uniqueness and global asymptotic stability of the equilibrium point for a class of neural networks, the neutral system has mixed time delays and parameter uncertainties. Under the assumption that the activation functions are globally Lipschitz continuous, we drive a new criterion for the robust stability of a class of neural networks with time delays by utilizing the Lyapunov stability theorems and the Homomorphic mapping theorem. Numerical examples are given to illustrate the effectiveness and the advantage of the proposed main results.

Speaker Identification by Joint Statistical Characterization in the Log Gabor Wavelet Domain

Real world Speaker Identification (SI) application differs from ideal or laboratory conditions causing perturbations that leads to a mismatch between the training and testing environment and degrade the performance drastically. Many strategies have been adopted to cope with acoustical degradation; wavelet based Bayesian marginal model is one of them. But Bayesian marginal models cannot model the inter-scale statistical dependencies of different wavelet scales. Simple nonlinear estimators for wavelet based denoising assume that the wavelet coefficients in different scales are independent in nature. However wavelet coefficients have significant inter-scale dependency. This paper enhances this inter-scale dependency property by a Circularly Symmetric Probability Density Function (CS-PDF) related to the family of Spherically Invariant Random Processes (SIRPs) in Log Gabor Wavelet (LGW) domain and corresponding joint shrinkage estimator is derived by Maximum a Posteriori (MAP) estimator. A framework is proposed based on these to denoise speech signal for automatic speaker identification problems. The robustness of the proposed framework is tested for Text Independent Speaker Identification application on 100 speakers of POLYCOST and 100 speakers of YOHO speech database in three different noise environments. Experimental results show that the proposed estimator yields a higher improvement in identification accuracy compared to other estimators on popular Gaussian Mixture Model (GMM) based speaker model and Mel-Frequency Cepstral Coefficient (MFCC) features.

Feature Point Detection by Combining Advantages of Intensity-based Approach and Edge-based Approach

In this paper, a novel corner detection method is presented to stably extract geometrically important corners. Intensity-based corner detectors such as the Harris corner can detect corners in noisy environments but has inaccurate corner position and misses the corners of obtuse angles. Edge-based corner detectors such as Curvature Scale Space can detect structural corners but show unstable corner detection due to incomplete edge detection in noisy environments. The proposed image-based direct curvature estimation can overcome limitations in both inaccurate structural corner detection of the Harris corner detector (intensity-based) and the unstable corner detection of Curvature Scale Space caused by incomplete edge detection. Various experimental results validate the robustness of the proposed method.

A Novel Framework for Abnormal Behaviour Identification and Detection for Wireless Sensor Networks

Despite extensive study on wireless sensor network security, defending internal attacks and finding abnormal behaviour of the sensor are still difficult and unsolved task. The conventional cryptographic technique does not give the robust security or detection process to save the network from internal attacker that cause by abnormal behavior. The insider attacker or abnormally behaved sensor identificationand location detection framework using false massage detection and Time difference of Arrival (TDoA) is presented in this paper. It has been shown that the new framework can efficiently identify and detect the insider attacker location so that the attacker can be reprogrammed or subside from the network to save from internal attack.

A Normalization-based Robust Image Watermarking Scheme Using SVD and DCT

Digital watermarking is one of the techniques for copyright protection. In this paper, a normalization-based robust image watermarking scheme which encompasses singular value decomposition (SVD) and discrete cosine transform (DCT) techniques is proposed. For the proposed scheme, the host image is first normalized to a standard form and divided into non-overlapping image blocks. SVD is applied to each block. By concatenating the first singular values (SV) of adjacent blocks of the normalized image, a SV block is obtained. DCT is then carried out on the SV blocks to produce SVD-DCT blocks. A watermark bit is embedded in the highfrequency band of a SVD-DCT block by imposing a particular relationship between two pseudo-randomly selected DCT coefficients. An adaptive frequency mask is used to adjust local watermark embedding strength. Watermark extraction involves mainly the inverse process. The watermark extracting method is blind and efficient. Experimental results show that the quality degradation of watermarked image caused by the embedded watermark is visually transparent. Results also show that the proposed scheme is robust against various image processing operations and geometric attacks.

Skew Detection Technique for Binary Document Images based on Hough Transform

Document image processing has become an increasingly important technology in the automation of office documentation tasks. During document scanning, skew is inevitably introduced into the incoming document image. Since the algorithm for layout analysis and character recognition are generally very sensitive to the page skew. Hence, skew detection and correction in document images are the critical steps before layout analysis. In this paper, a novel skew detection method is presented for binary document images. The method considered the some selected characters of the text which may be subjected to thinning and Hough transform to estimate skew angle accurately. Several experiments have been conducted on various types of documents such as documents containing English Documents, Journals, Text-Book, Different Languages and Document with different fonts, Documents with different resolutions, to reveal the robustness of the proposed method. The experimental results revealed that the proposed method is accurate compared to the results of well-known existing methods.