Statistical Analysis of First Order Plus Dead-time System using Operational Matrix

To increase precision and reliability of automatic control systems, we have to take into account of random factors affecting the control system. Thus, operational matrix technique is used for statistical analysis of first order plus time delay system with uniform random parameter. Examples with deterministic and stochastic disturbance are considered to demonstrate the validity of the method. Comparison with Monte Carlo method is made to show the computational effectiveness of the method.

A Numerical Approach for Static and Dynamic Analysis of Deformable Journal Bearings

This paper presents a numerical approach for the static and dynamic analysis of hydrodynamic radial journal bearings. In the first part, the effect of shaft and housing deformability on pressure distribution within oil film is investigated. An iterative algorithm that couples Reynolds equation with a plane finite elements (FE) structural model is solved. Viscosity-to-pressure dependency (Vogel- Barus equation) is also included. The deformed lubrication gap and the overall stress state are obtained. Numerical results are presented with reference to a typical journal bearing configuration at two different inlet oil temperatures. Obtained results show the great influence of bearing components structural deformation on oil pressure distribution, compared with results for ideally rigid components. In the second part, a numerical approach based on perturbation method is used to compute stiffness and damping matrices, which characterize the journal bearing dynamic behavior.

CFD Analysis of a Centrifugal Fan for Performance Enhancement using Converging Boundary Layer Suction Slots

Generally flow behavior in centrifugal fan is observed to be in a state of instability with flow separation zones on suction surface as well as near the front shroud. Overall performance of the diffusion process in a centrifugal fan could be enhanced by judiciously introducing the boundary layer suction slots. With easy accessibility of CFD as an analytical tool, an extensive numerical whole field analysis of the effect of boundary layer suction slots in discrete regions of suspected separation points is possible. This paper attempts to explore the effect of boundary layer suction slots corresponding to various geometrical locations on the impeller with converging configurations for the slots. The analysis shows that the converging suction slots located on the impeller blade about 25% from the trailing edge, significantly improves the static pressure recovery across the fan. Also it is found that Slots provided at a radial distance of about 12% from the leading and trailing edges marginally improve the static pressure recovery across the fan.

Markov Game Controller Design Algorithms

Markov games are a generalization of Markov decision process to a multi-agent setting. Two-player zero-sum Markov game framework offers an effective platform for designing robust controllers. This paper presents two novel controller design algorithms that use ideas from game-theory literature to produce reliable controllers that are able to maintain performance in presence of noise and parameter variations. A more widely used approach for controller design is the H∞ optimal control, which suffers from high computational demand and at times, may be infeasible. Our approach generates an optimal control policy for the agent (controller) via a simple Linear Program enabling the controller to learn about the unknown environment. The controller is facing an unknown environment, and in our formulation this environment corresponds to the behavior rules of the noise modeled as the opponent. Proposed controller architectures attempt to improve controller reliability by a gradual mixing of algorithmic approaches drawn from the game theory literature and the Minimax-Q Markov game solution approach, in a reinforcement-learning framework. We test the proposed algorithms on a simulated Inverted Pendulum Swing-up task and compare its performance against standard Q learning.

RadMote: A Mobile Framework for Radiation Monitoring in Nuclear Power Plants

Wireless Sensor Networks (WSNs) have attracted the attention of many researchers. This has resulted in their rapid integration in very different areas such as precision agriculture,environmental monitoring, object and event detection and military surveillance. Due to the current WSN characteristics this technology is specifically useful in industrial areas where security, reliability and autonomy are basic, such as nuclear power plants, chemical plants, and others. In this paper we present a system based on WSNs to monitor environmental conditions around and inside a nuclear power plant, specifically, radiation levels. Sensor nodes, equipped with radiation sensors, are deployed in fixed positions throughout the plant. In addition, plant staff are also equipped with mobile devices with higher capabilities than sensors such as for example PDAs able to monitor radiation levels and other conditions around them. The system enables communication between PDAs, which form a Mobile Ad-hoc Wireless Network (MANET), and allows workers to monitor remote conditions in the plant. It is particularly useful during stoppage periods for inspection or in the event of an accident to prevent risk situations.

Implicit Two Step Continuous Hybrid Block Methods with Four Off-Steps Points for Solving Stiff Ordinary Differential Equation

In this paper, a self starting two step continuous block hybrid formulae (CBHF) with four Off-step points is developed using collocation and interpolation procedures. The CBHF is then used to produce multiple numerical integrators which are of uniform order and are assembled into a single block matrix equation. These equations are simultaneously applied to provide the approximate solution for the stiff ordinary differential equations. The order of accuracy and stability of the block method is discussed and its accuracy is established numerically.

Hopf Bifurcation for a New Chaotic System

In this paper, a three dimensional autonomous chaotic system is considered. The existence of Hopf bifurcation is investigated by choosing the appropriate bifurcation parameter. Furthermore, formulas for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions are derived with the help of normal form theory. Finally, a numerical example is given.

Utilization of Agro-Industrial Waste in Metal Matrix Composites: Towards Sustainability

The application of agro-industrial waste in Aluminum Metal Matrix Composites has been getting more attention as they can reinforce particles in metal matrix which enhance the strength properties of the composites. In addition, by applying these agroindustrial wastes in useful way not only save the manufacturing cost of products but also reduce the pollutions on environment. This paper represents a literature review on a range of industrial wastes and their utilization in metal matrix composites. The paper describes the synthesis methods of agro-industrial waste filled metal matrix composite materials and their mechanical, wear, corrosion, and physical properties. It also highlights the current application and future potential of agro-industrial waste reinforced composites in aerospace, automotive and other construction industries.

Prediction of Slump in Concrete using Artificial Neural Networks

High Strength Concrete (HSC) is defined as concrete that meets special combination of performance and uniformity requirements that cannot be achieved routinely using conventional constituents and normal mixing, placing, and curing procedures. It is a highly complex material, which makes modeling its behavior a very difficult task. This paper aimed to show possible applicability of Neural Networks (NN) to predict the slump in High Strength Concrete (HSC). Neural Network models is constructed, trained and tested using the available test data of 349 different concrete mix designs of High Strength Concrete (HSC) gathered from a particular Ready Mix Concrete (RMC) batching plant. The most versatile Neural Network model is selected to predict the slump in concrete. The data used in the Neural Network models are arranged in a format of eight input parameters that cover the Cement, Fly Ash, Sand, Coarse Aggregate (10 mm), Coarse Aggregate (20 mm), Water, Super-Plasticizer and Water/Binder ratio. Furthermore, to test the accuracy for predicting slump in concrete, the final selected model is further used to test the data of 40 different concrete mix designs of High Strength Concrete (HSC) taken from the other batching plant. The results are compared on the basis of error function (or performance function).

Conceptual Investigation of Short-Columns and Masonary Infill Frames Effect in the Earthquakes

This paper highlights the importance of the selection of the building-s wall material,and the shortcomings of the most commonly used framed structures with masonry infills .The objective of this study is investigating the behavior of infill walls as structural components in existing structures.Structural infill walls are very important in structural behavior under earthquake effects. Structural capacity under the effect of earthquake,displacement and relative story displacement are affected by the structural irregularities .The presence of nonstructural masonry infill walls can modify extensively the global seismic behavior of framed buildings .The stability and integrity of reinforced concrete frames are enhanced by masonry infill walls. Masonry infill walls alter displacement and base shear of the frame as well. Short columns have great importance during earthquakes,because their failure may lead to additional structural failures and result in total building collapse. Consequently the effects of short columns are considered in this study.

Towards an Understanding of how Information Technology Enables Innovation – The Innovators- Perceptions

This research attempts to explore gaps in Information Systems (IS) and innovation literatures by developing a model of Information Technology (IT) capability in enabling innovation. The research was conducted by using semi-structured interview with six innovators in business consulting, financial, healthcare and academic organizations. The interview results suggest four elements of ITenabled innovation capability which are information (ability to capture ideas and knowledge), connectivity (ability to bridge geographical boundary and mobilize human resources), communication (ability to attain and engage relationships between human resources) and transformation (ability to change the functions and process integrations) in defining IT-enabled innovation platform. The results also suggests innovators- roles and IT capability.

Seismic Performance of Masonry Buildings in Algeria

Structural performance and seismic vulnerability of masonry buildings in Algeria are investigated in this paper. Structural classification of such buildings is carried out regarding their structural elements. Seismicity of Algeria is briefly discussed. Then vulnerability of masonry buildings and their failure mechanisms in the Boumerdes earthquake (May, 2003) are examined.

Motion Detection Techniques Using Optical Flow

Motion detection is very important in image processing. One way of detecting motion is using optical flow. Optical flow cannot be computed locally, since only one independent measurement is available from the image sequence at a point, while the flow velocity has two components. A second constraint is needed. The method used for finding the optical flow in this project is assuming that the apparent velocity of the brightness pattern varies smoothly almost everywhere in the image. This technique is later used in developing software for motion detection which has the capability to carry out four types of motion detection. The motion detection software presented in this project also can highlight motion region, count motion level as well as counting object numbers. Many objects such as vehicles and human from video streams can be recognized by applying optical flow technique.

Key Success Factors for Managing Projects

The use and management of projects has risen to a new prominence, with projects seen as critical to economic in both the private and public sectors due challenging and dynamic business environment. However, failure in managing project is encountered regularly, which cause the waste of company resources. The impacts of projects that failed to meet stakeholders expectations have left behind long lasting negative consequences in organization. Therefore, this research aims to investigate on key success factors of project management in an organization. It is believed that recognizing important factors that contribute to successful project will help companies to increase the overall profitability. 150 questionnaires were distributed to respondents and 110 questionnaires were collected and used in performing the data analysis. The result has strongly supported the relationship between independent variables and project performance.

A Probability based Pair Extension Method in Protein 2-DE Gel Image Analysis

The two-dimensional gel electrophoresis method (2-DE) is widely used in Proteomics to separate thousands of proteins in a sample. By comparing the protein expression levels of proteins in a normal sample with those in a diseased one, it is possible to identify a meaningful set of marker proteins for the targeted disease. The major shortcomings of this approach involve inherent noises and irregular geometric distortions of spots observed in 2-DE images. Various experimental conditions can be the major causes of these problems. In the protein analysis of samples, these problems eventually lead to incorrect conclusions. In order to minimize the influence of these problems, this paper proposes a partition based pair extension method that performs spot-matching on a set of gel images multiple times and segregates more reliable mapping results which can improve the accuracy of gel image analysis. The improved accuracy of the proposed method is analyzed through various experiments on real 2-DE images of human liver tissues.

Development of Maximum Entropy Method for Prediction of Droplet-size Distribution in Primary Breakup Region of Spray

Droplet size distributions in the cold spray of a fuel are important in observed combustion behavior. Specification of droplet size and velocity distributions in the immediate downstream of injectors is also essential as boundary conditions for advanced computational fluid dynamics (CFD) and two-phase spray transport calculations. This paper describes the development of a new model to be incorporated into maximum entropy principle (MEP) formalism for prediction of droplet size distribution in droplet formation region. The MEP approach can predict the most likely droplet size and velocity distributions under a set of constraints expressing the available information related to the distribution. In this article, by considering the mechanisms of turbulence generation inside the nozzle and wave growth on jet surface, it is attempted to provide a logical framework coupling the flow inside the nozzle to the resulting atomization process. The purpose of this paper is to describe the formulation of this new model and to incorporate it into the maximum entropy principle (MEP) by coupling sub-models together using source terms of momentum and energy. Comparison between the model prediction and experimental data for a gas turbine swirling nozzle and an annular spray indicate good agreement between model and experiment.

Effects of pH, Temperature, Enzyme and Substrate Concentration on Xylooligosaccharides Production

Agricultural residue such as oil palm fronds (OPF) is cheap, widespread and available throughout the year. Hemicelluloses extracted from OPF can be hydrolyzed to their monomers and used in production of xylooligosaccharides (XOs). The objective of the present study was to optimize the enzymatic hydrolysis process of OPF hemicellulose by varying pH, temperature, enzyme and substrate concentration for production of XOs. Hemicelluloses was extracted from OPF by using 3 M potassium hydroxide (KOH) at temperature of 40°C for 4 hrs and stirred at 400 rpm. The hemicellulose was then hydrolyzed using Trichoderma longibrachiatum xylanase at different pH, temperature, enzyme and substrate concentration. XOs were characterized based on reducing sugar determination. The optimum conditions to produced XOs from OPF hemicellulose was obtained at pH 4.6, temperature of 40°C , enzyme concentration of 2 U/mL and 2% substrate concentration. The results established the suitability of oil palm fronds as raw material for production of XOs.

Evaluation of Antioxidant Properties of Barberry Fruits Extracts Using Maceration and Subcritical Water Extraction (SWE)

The quality and shelf life of foods of containing lipids (fats and oils) significantly reduces due to rancidity.Applications of natural antioxidants are one of the most effective manners to prevent the oxidation of oils and lipids. The antioxidant properties of juice extracted from barberry fruit (Berberris vulgaris.L) using maceration and SWE (10 bars and 120 - 180°C) methods were investigated and compared with conventional method. The amount of phenolic compound and reduction power of all samples were determined and the data were statistically analyzed using multifactor design. The results showed that the total amount of phenolic compound increased with increasing of pressure and temprature from 1861.9 to 2439.1 (mg Gallic acid /100gr Dry matter). The ability of reduction power of SWE obtained antioxidant extract compared with BHA (synthetic antioxidant) and ascorbic acid (natural antioxidant). There were significant differences among reduction power of extracts and there were remarkable difference with BHA and Ascorbic acid (P

Stress, Perceived Social Support, Coping Capability and Depression: A Study of Local and Foreign Students in the Malaysian Context

The aim of this study is to investigate the effect of perceived social support and stress on the coping capability and level of depression of foreign and local students in Malaysia. Using convenience sampling, 200 students from three universities in Selangor, Malaysia participated in the study. The results of this study revealed that there was a significant relationship between perceived social support and coping capability. It is also found that there is a negative relationship between coping capability and depression. Further, stress and depression are positively related whereas stress and coping capability are negatively related. Lastly, there is no significant difference for the stress level and coping capability amongst local and foreign students.

User Experience Evolution Lifecycle Framework

Perceptions of quality from both designers and users perspective have now stretched beyond the traditional usability, incorporating abstract and subjective concepts. This has led to a shift in human computer interaction research communities- focus; a shift that focuses on achieving user experience (UX) by not only fulfilling conventional usability needs but also those that go beyond them. The term UX, although widely spread and given significant importance, lacks consensus in its unified definition. In this paper, we survey various UX definitions and modeling frameworks and examine them as the foundation for proposing a UX evolution lifecycle framework for understanding UX in detail. In the proposed framework we identify the building blocks of UX and discuss how UX evolves in various phases. The framework can be used as a tool to understand experience requirements and evaluate them, resulting in better UX design and hence improved user satisfaction.