Factors Influencing Students' Self-Concept among Malaysian Students

This paper examines the students’ self-concept among 16- and 17- year- old adolescents in Malaysian secondary schools. Previous studies have shown that positive self-concept played an important role in student adjustment and academic performance during schooling. This study attempts to investigate the factors influencing students’ perceptions toward their own self-concept. A total of 1168 students participated in the survey. This study utilized the CoPs (UM) instrument to measure self-concept. Principal Component Analysis (PCA) revealed three factors: academic selfconcept, physical self-concept and social self-concept. This study confirmed that students perceived certain internal context factors, and revealed that external context factor also have an impact on their self-concept.

Suspended Matter Model on Alsat-1 Image by MLP Network and Mathematical Morphology: Prototypes by K-Means

In this article, we propose a methodology for the characterization of the suspended matter along Algiers-s bay. An approach by multi layers perceptron (MLP) with training by back propagation of the gradient optimized by the algorithm of Levenberg Marquardt (LM) is used. The accent was put on the choice of the components of the base of training where a comparative study made for four methods: Random and three alternatives of classification by K-Means. The samples are taken from suspended matter image, obtained by analytical model based on polynomial regression by taking account of in situ measurements. The mask which selects the zone of interest (water in our case) was carried out by using a multi spectral classification by ISODATA algorithm. To improve the result of classification, a cleaning of this mask was carried out using the tools of mathematical morphology. The results of this study presented in the forms of curves, tables and of images show the founded good of our methodology.

Application of Mutual Information based Least dependent Component Analysis (MILCA) for Removal of Ocular Artifacts from Electroencephalogram

The electrical potentials generated during eye movements and blinks are one of the main sources of artifacts in Electroencephalogram (EEG) recording and can propagate much across the scalp, masking and distorting brain signals. In recent times, signal separation algorithms are used widely for removing artifacts from the observed EEG data. In this paper, a recently introduced signal separation algorithm Mutual Information based Least dependent Component Analysis (MILCA) is employed to separate ocular artifacts from EEG. The aim of MILCA is to minimize the Mutual Information (MI) between the independent components (estimated sources) under a pure rotation. Performance of this algorithm is compared with eleven popular algorithms (Infomax, Extended Infomax, Fast ICA, SOBI, TDSEP, JADE, OGWE, MS-ICA, SHIBBS, Kernel-ICA, and RADICAL) for the actual independence and uniqueness of the estimated source components obtained for different sets of EEG data with ocular artifacts by using a reliable MI Estimator. Results show that MILCA is best in separating the ocular artifacts and EEG and is recommended for further analysis.

The Global Crisis, Remittance Transfers, and Livelihoods of the Poor

With the global financial crisis turning into what more and more appears to be a prolonged “Great Recession", we are witnessing marked reductions in remittance transfers to developing countries with the likely possibility that overall flows will decline even further in the near future. With countless families reliant on remittance inflows as a source of income maintaining their economic livelihood, a reduction would put many at risk of falling below or deeper into poverty. Recognizing the importance of remittance inflows as a lifeline to the poor, policy should aim to (1) reduce the barriers to remit in both sending and receiving nations thus easing the decline in transfers; (2) leverage the development impacts of remittances; and (3) buffer vulnerable groups dependent on remittance transfers as a source of livelihood through sound countercyclical macroeconomic policies.

An Optimization of the New Die Design of Sheet Hydroforming by Taguchi Method

During the last few years, several sheet hydroforming processes have been introduced. Despite the advantages of these methods, they have some limitations. Of the processes, the two main ones are the standard hydroforming and hydromechanical deep drawing. A new sheet hydroforming die set was proposed that has the advantages of both processes and eliminates their limitations. In this method, a polyurethane plate was used as a part of the die-set to control the blank holder force. This paper outlines the Taguchi optimization methodology, which is applied to optimize the effective parameters in forming cylindrical cups by the new die set of sheet hydroforming process. The process parameters evaluated in this research are polyurethane hardness, polyurethane thickness, forming pressure path and polyurethane hole diameter. The design of experiments based upon L9 orthogonal arrays by Taguchi was used and analysis of variance (ANOVA) was employed to analyze the effect of these parameters on the forming pressure. The analysis of the results showed that the optimal combination for low forming pressure is harder polyurethane, bigger diameter of polyurethane hole and thinner polyurethane. Finally, the confirmation test was derived based on the optimal combination of parameters and it was shown that the Taguchi method is suitable to examine the optimization process.

Dynamics and Driving Forces of the Alpine Wetlands in the Yarlung Zangbo River Basin of Tibet, China

Based on the field investigation and long term remote sensing data, the dynamics of the alpine wetland in the river basin and their response to climate change were studied. Results showed the alpine wetlands accounted for 3.73% of total basin in 2010. Lake and river appeared an increasing trend in the past 30 years, with an increase of 34.36 % and 24.57%. However, swamp exhibited a tendency of decreasing with 233.74 km2. Annual average temperature, maximum temperature, minimum temperature and precipitation in the river basin all exhibited an increasing trend, whereas relative humidity exhibited a decreasing trend. Ice and snow melting are main reasons of lake and river area enhancement and swamp area descend. There existed 91.78%-97.86% of reduced swamp converted into lakes on the basis of remote sensing image interpretation. China-s government policy of implementing development in the river basin is the major driving force of artificial wetland growth.

Thermodynamic Analysis of a Novel Thermal Driven Refrigeration System

Thermal-driven refrigeration systems have attracted increasing research and development interest in recent years. These systems do not cause ozone depletion and can reduce demand on electricity. The main objective of this work is to perform theoretical analyses of a thermal-driven refrigeration system using a new sorbent-sorptive pair as the working pair. The active component of sorbent is sodium thiocyanate (NaSCN). Ammonia (NH3) is chosen as sorptive. Based on the thermodynamic properties of the working solution, a mathematical model is introduced to analyze the system characteristics and performance. The results are used to compare with other thermal-driven refrigeration systems. It is shown that the advantages provided by this system over other absorption units include lower generator and evaporator temperatures, a higher coefficient of performance (COP). The COP is about 10 percent higher than the ones for the NH3-H2O system working at the same conditions.

Estimation of the Bit Side Force by Using Artificial Neural Network

Horizontal wells are proven to be better producers because they can be extended for a long distance in the pay zone. Engineers have the technical means to forecast the well productivity for a given horizontal length. However, experiences have shown that the actual production rate is often significantly less than that of forecasted. It is a difficult task, if not impossible to identify the real reason why a horizontal well is not producing what was forecasted. Often the source of problem lies in the drilling of horizontal section such as permeability reduction in the pay zone due to mud invasion or snaky well patterns created during drilling. Although drillers aim to drill a constant inclination hole in the pay zone, the more frequent outcome is a sinusoidal wellbore trajectory. The two factors, which play an important role in wellbore tortuosity, are the inclination and side force at bit. A constant inclination horizontal well can only be drilled if the bit face is maintained perpendicular to longitudinal axis of bottom hole assembly (BHA) while keeping the side force nil at the bit. This approach assumes that there exists no formation force at bit. Hence, an appropriate BHA can be designed if bit side force and bit tilt are determined accurately. The Artificial Neural Network (ANN) is superior to existing analytical techniques. In this study, the neural networks have been employed as a general approximation tool for estimation of the bit side forces. A number of samples are analyzed with ANN for parameters of bit side force and the results are compared with exact analysis. Back Propagation Neural network (BPN) is used to approximation of bit side forces. Resultant low relative error value of the test indicates the usability of the BPN in this area.

Electricity Power Planning: the Role of Wind Energy

Combining energy efficiency with renewable energy sources constitutes a key strategy for a sustainable future. The wind power sector stands out as a fundamental element for the achievement of the European renewable objectives and Portugal is no exception to the increase of the wind energy for the electricity generation. This work proposes an optimization model for the long range electricity power planning in a system similar to the Portuguese one, where the expected impacts of the increasing installed wind power on the operating performance of thermal power plants are taken into account. The main results indicate that the increasing penetration of wind power in the electricity system will have significant effects on the combined cycle gas power plants operation and on the theoretically expected cost reduction and environmental gains. This research demonstrated the need to address the impact that energy sources with variable output may have, not only on the short-term operational planning, but especially on the medium to long range planning activities, in order to meet the strategic objectives for the energy sector.

CEO Duality and Firm Performance: An Integration of Institutional Perceptive with Agency Theory

The recommendation of the committee on corporate governance for public companies in Nigeria, that the position of the CEO be separated from board chair has generated serious debate among scholars and practitioners. They have questioned the appropriateness of implementing corporate governance model that is based on Anglo-Saxon agency problem characterized by dispersed ownership structure; where markets for corporate control, legal regulation, and contractual incentives are the key governance mechanisms. This paper strives to resolve the argument by adopting an institutional perspective in testing the agency theory on board duality. The study developed a theoretical and empirical model to better understand how ownership structure influences agency conflict and how such affects firm performance. Hence, the study examines the relationship between CEO duality and firm performance using two institutional ownership structures – dispersed ownership and concentrated ownership structures. The empirical results show that CEO duality is negatively correlated with firm performance in Nigeria irrespective of the firm-s ownership structure. The findings give credence to the recommendation of the Peterside Commission on the need to separate the position of CEO from board chair.

Oxygen Transfer by Multiple Inclined Plunging Water Jets

There has been a growing interest in the oxygenation by plunging water jets in the last few years due to their inherent advantages, like energy-efficient, low operation cost, etc. Though a lot of work has been reported on the oxygen-transfer by single plunging water jets but very few studies have been carried out using multiple plunging jets. In this paper, volumetric oxygen-transfer coefficient and oxygen-transfer efficiency has been studied experimentally for multiple inclined plunging jets (having jet plunge angle of 60 0 ) in a pool of water for different configurations, in terms of varying number of jets and jet diameters. This research suggests that the volumetric oxygen-transfer coefficient and oxygentransfer efficiency of the multiple inclined plunging jets for air-water system are significantly higher than those of a single vertical as well as inclined plunging jet for same flow area and other similar conditions. The study also reveals that the oxygen-transfer increase with increase in number of multiple jets under similar conditions, which will be most advantageous and energy-efficient in practical situations when large volumes of wastewaters are to be treated. A relationship between volumetric oxygen-transfer coefficient and jet parameters is also proposed. The suggested relationship predicts the volumetric oxygen-transfer coefficient for multiple inclined plunging jet(s) within a scatter of ±15 percent. The relationship will be quite useful in scale-up and in deciding optimum configuration of multiple inclined plunging jet aeration system.

Comparative Analysis of Farm Enterprises Performance in Two Agro-Ecological Feuding Zone of Nigeria

The two agro-ecological zones became the focus of the study because of violent nature of the incessant conflict in the zones. The available register of farmers association was the sampling frame work where ten percent (61) farmers per state were randomly sampled. Data were collected and analysed using z-test. The research findings revealed tree crops and grains production enterprises ranked higher in Osun (rain fed zones) and Taraba states (savannah zones) respectively. Osun state entrepreneur felt the effect of the conflict on their enterprises more than Tarba state. The reasons adduced for severity of the conflict on enterprises are majority (77.0%) migrated and (75.5%) of them were not allowed to enter their farms during and when conflict deescalated unlike situation in Taraba state. The different in enterprises production level between the two agroecological zone was statistically significant at p

Response of BGA-Urea Fertigation as N2 Source on Growth Parameters and Yield of Paddy (Oryza sativa L.) in Agra (India)

Paddy being cultivated since about 10,000 years B.C in Ganga Valley in India, its production reached up to 99 million tons in the year 2012. BGA are of much ecological importance for maintaining the soil fertility and reclaiming the alkalinity. In present investigation attempts were made to identify the local cyanobacterial genera from the paddy fields, BGA application for green farming enabling the paddy to utilize more amount of nitrogen released and to examine its impact along with Urea upon growth and yield responses of the Paddy crop. It was observed that combined treatment of BGA with Urea proved better response in almost all growth parameters and yield attributes except number of tillers/ Plant and grains/ panicle as compared to application of either Urea or BGA alone. The Paddy growers should be encouraged to adopt BGA along with Urea as source of Nitrogen for Paddy cultivation.

Urban Environmental Challenges in Developing Cities: The Case of Ethiopian Capital Addis Ababa

Addis Ababa is a seat of African Union (AU), United Nations Economic Commission for Africa (UN-ECA) and hundreds of embassies and consular representatives. Addis Ababa is one of the highest capitals in the world with an average 2400 meters above sea level. It is dichotomous city with a blend of modern high-rise and deteriorating slum quarters. Water supply and sanitation, waste management and housing are continuing to be serious problems. Forest wood based domestic energy use as well as uncontrolled emissions from mobile and fixed sources has endangered the state of the urban environment. Analysis based on satellite imagery has revealed the deteriorating urban environment within the last three decades. The recently restructured city administration has brought improvements in the condition of the urban environment. However, the overwhelming size of the challenges faced by the city dwarfed their fairly good results.

A Study on the Secure ebXML Transaction Models

ebXML (Electronic Business using eXtensible Markup Language) is an e-business standard, sponsored by UN/CEFACT and OASIS, which enables enterprises to exchange business messages, conduct trading relationships, communicate data in common terms and define and register business processes. While there is tremendous e-business value in the ebXML, security remains an unsolved problem and one of the largest barriers to adoption. XML security technologies emerging recently have extensibility and flexibility suitable for security implementation such as encryption, digital signature, access control and authentication. In this paper, we propose ebXML business transaction models that allow trading partners to securely exchange XML based business transactions by employing XML security technologies. We show how each XML security technology meets the ebXML standard by constructing the test software and validating messages between the trading partners.

Developing Road Performance Measurement System with Evaluation Instrument

Transportation authorities need to provide the services and facilities that are critical to every country-s well-being and development. Management of the road network is becoming increasingly challenging as demands increase and resources are limited. Public sector institutions are integrating performance information into budgeting, managing and reporting via implementing performance measurement systems. In the face of growing challenges, performance measurement of road networks is attracting growing interest in many countries. The large scale of public investments makes the maintenance and development of road networks an area where such systems are an important assessment tool. Transportation agencies have been using performance measurement and modeling as part of pavement and bridge management systems. Recently the focus has been on extending the process to applications in road construction and maintenance systems, operations and safety programs, and administrative structures and procedures. To eliminate failure and dysfunctional consequences the importance of obtaining objective data and implementing evaluation instrument where necessary is presented in this paper

Conceptual Design and Characterization of Contractile Water Jet Thruster Using IPMC Actuator

This paper presents the design, development and characterization of contractile water jet thruster (CWJT) for mini underwater robot. Instead of electric motor, this CWJT utilizes the Ionic Polymer Metal Composite (IPMC) as the actuator to generate the water jet. The main focus of this paper is to analyze the conceptual design of the proposed CWJT which would determine the thrust force value, jet flow behavior and actuator’s stress. Those thrust force and jet flow studies were carried out using Matlab/Simscape simulation software. The actuator stress had been analyzed using COSMOS simulation software. The results showed that there was no significant change for jet velocity at variable cross sectional nozzle area. However, a significant change was detected for jet velocity at different nozzle cross sectional area ratio which was up to 37%. The generated thrust force has proportional relation to the nozzle cross sectional area.

Inversion Layer Effective Mobility Model for Pocket Implanted Nano Scale n-MOSFET

Carriers scattering in the inversion channel of n- MOSFET dominates the drain current. This paper presents an effective electron mobility model for the pocket implanted nano scale n-MOSFET. The model is developed by using two linear pocket profiles at the source and drain edges. The channel is divided into three regions at source, drain and central part of the channel region. The total number of inversion layer charges is found for these three regions by numerical integration from source to drain ends and the number of depletion layer charges is found by using the effective doping concentration including pocket doping effects. These two charges are then used to find the effective normal electric field, which is used to find the effective mobility model incorporating the three scattering mechanisms, such as, Coulomb, phonon and surface roughness scatterings as well as the ballistic phenomena for the pocket implanted nano-scale n-MOSFET. The simulation results show that the derived mobility model produces the same results as found in the literatures.

Spreading of Swirling Double–Concentric Jets at Low and High Pulsation Intensities

The spreading characteristics of acoustically excited swirling double-concentric jets were studied experimentally. The central jet was acoustically excited at low and high pulsation intensities. A smoke wire flow visualization and a hot-wire anemometer velocity measurement results show that excitation forces a vortex ring to roll-up from the edge of the central tube during each excitation period. At low pulsation intensities, the vortex ring evolves downstream, and eventually breaks up into turbulent eddies. At high pulsation intensities, the primary vortex ring evolves and a series of trailing vortex rings form during the same period of excitation. The trailing vortex rings accelerate while evolving downstream and overtake the primary vortex ring within the same cycle. In the process, the primary vortex ring becomes unstable and breaks up early. The effect of the fast traveling trailing vortex rings combined with the swirl motion of the annular flow improve jet spreading compared with the naturally evolving jets.

Steady State Simulation and Experimental Study of an Ethane Recovery Unit in an Iranian Natural Gas Refinery

The production and consumption of natural gas is on the rise throughout the world as a result of its wide availability, ease of transportation, use and clean-burning characteristics. The chief use of ethane is in the chemical industry in the production of Ethene (ethylene) by steam cracking. In this simulation, obtained ethane recovery percent based on Gas sub-cooled process (GSP) is 99.9 by mole that is included 32.1% by using de-methanizer column and 67.8% by de-ethanizer tower. The outstanding feature of this process is the novel split-vapor concept that employs to generate reflux for de-methanizer column. Remain amount of ethane in export gas cause rise in gross heating value up to 36.66 MJ/Nm3 in order to use in industrial and household consumptions.