Study of Cross Flow Air-Cooling Process via Water-Cooled Wing-Shaped Tubes in Staggered Arrangement at Different Angles of Attack, Part 2: Heat Transfer Characteristics and Thermal Performance Criteria

An experimental and numerical study has been conducted to clarify heat transfer characteristics and effectiveness of a cross-flow heat exchanger employing staggered wing-shaped tubes at different angels of attack. The water-side Rew and the air-side Rea were at 5 x 102 and at from 1.8 x 103 to 9.7 x 103, respectively. The tubes arrangements were employed with various angles of attack θ1,2,3 from 0° to 330° at the considered Rea range. Correlation of Nu, St, as well as the heat transfer per unit pumping power (ε) in terms of Rea, design parameters for the studied bundle were presented. The temperature fields around the staggered wing-shaped tubes bundle were predicted by using commercial CFD FLUENT 6.3.26 software package. Results indicated that the heat transfer was increased by increasing the angle of attack from 0° to 45°, while the opposite was true for angles of attack from 135° to 180°. The best thermal performance and hence η of studied bundle was occurred at the lowest Rea and/or zero angle of attack. Comparisons between the experimental and numerical results of the present study and those, previously, obtained for similar available studies showed good agreements.

Enhanced Particle Swarm Optimization Approach for Solving the Non-Convex Optimal Power Flow

An enhanced particle swarm optimization algorithm (PSO) is presented in this work to solve the non-convex OPF problem that has both discrete and continuous optimization variables. The objective functions considered are the conventional quadratic function and the augmented quadratic function. The latter model presents non-differentiable and non-convex regions that challenge most gradient-based optimization algorithms. The optimization variables to be optimized are the generator real power outputs and voltage magnitudes, discrete transformer tap settings, and discrete reactive power injections due to capacitor banks. The set of equality constraints taken into account are the power flow equations while the inequality ones are the limits of the real and reactive power of the generators, voltage magnitude at each bus, transformer tap settings, and capacitor banks reactive power injections. The proposed algorithm combines PSO with Newton-Raphson algorithm to minimize the fuel cost function. The IEEE 30-bus system with six generating units is used to test the proposed algorithm. Several cases were investigated to test and validate the consistency of detecting optimal or near optimal solution for each objective. Results are compared to solutions obtained using sequential quadratic programming and Genetic Algorithms.

Various Speech Processing Techniques For Speech Compression And Recognition

Years of extensive research in the field of speech processing for compression and recognition in the last five decades, resulted in a severe competition among the various methods and paradigms introduced. In this paper we include the different representations of speech in the time-frequency and time-scale domains for the purpose of compression and recognition. The examination of these representations in a variety of related work is accomplished. In particular, we emphasize methods related to Fourier analysis paradigms and wavelet based ones along with the advantages and disadvantages of both approaches.

A Reduced-Bit Multiplication Algorithm for Digital Arithmetic

A reduced-bit multiplication algorithm based on the ancient Vedic multiplication formulae is proposed in this paper. Both the Vedic multiplication formulae, Urdhva tiryakbhyam and Nikhilam, are first discussed in detail. Urdhva tiryakbhyam, being a general multiplication formula, is equally applicable to all cases of multiplication. It is applied to the digital arithmetic and is shown to yield a multiplier architecture which is very similar to the popular array multiplier. Due to its structure, it leads to a high carry propagation delay in case of multiplication of large numbers. Nikhilam Sutra, on the other hand, is more efficient in the multiplication of large numbers as it reduces the multiplication of two large numbers to that of two smaller numbers. The framework of the proposed algorithm is taken from this Sutra and is further optimized by use of some general arithmetic operations such as expansion and bit-shifting to take advantage of bit-reduction in multiplication. We illustrate the proposed algorithm by reducing a general 4x4-bit multiplication to a single 2 x 2-bit multiplication operation.

A PSO-based SSSC Controller for Improvement of Transient Stability Performance

The application of a Static Synchronous Series Compensator (SSSC) controller to improve the transient stability performance of a power system is thoroughly investigated in this paper. The design problem of SSSC controller is formulated as an optimization problem and Particle Swarm Optimization (PSO) Technique is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor angle of the generator is involved; transient stability performance of the system is improved. The proposed controller is tested on a weakly connected power system subjected to different severe disturbances. The non-linear simulation results are presented to show the effectiveness of the proposed controller and its ability to provide efficient damping of low frequency oscillations. It is also observed that the proposed SSSC controller improves greatly the voltage profile of the system under severe disturbances.

Design of Modular Robotic Joints for Achieving Various Robot Configurations

This paper describes various stages of design and prototyping of a modular robot for use in various industrial applications. The major goal of current research has been to design and make different robotic joints at low cost capable of being assembled together in any given order for achieving various robot configurations. Five different types of joins were designed and manufactured where extensive research has been carried out on the design of each joint in order to achieve optimal strength, size, modularity, and price. This paper presents various stages of research and development undertaken to engineer these joints that include material selection, manufacturing, and strength analysis. The outcome of this research addresses the birth of a new generation of modular industrial robots with a wider range of applications and greater efficiency.

The Impact of Process Parameters on the Output Characteristics of an LDMOS Device

In this paper, we have examined the effect of process parameter variation on the electrical characteristics of an LDMOS device. The rate of change in the electrical parameters such as cut off frequency, breakdown voltage and drain saturation current as a function of the process parameters is investigated

Evaluating New Service Development Performance Based on Multigranular Linguistic Assessment

The service sector continues to grow and the percentage of GDP accounted for by service industries keeps increasing. The growth and importance of service to an economy is not just a phenomenon of advanced economies, service is now a majority of the world gross domestic products. However, the performance evaluation process of new service development problems generally involves uncertain and imprecise data. This paper presents a 2-tuple fuzzy linguistic computing approach to dealing with heterogeneous information and information loss problems while the processes of subjective evaluation integration. The proposed method based on group decision-making scenario to assist business managers in measuring performance of new service development manipulates the heterogeneity integration processes and avoids the information loss effectively.

Study of Microbial Critical Points of Saffron from Farm to Factory in Iran

In this research saffron samples were prepared from farms and sampling was done in four states contain : sampling from fresh saffron of petal with forceps , sampling from fresh saffron of petal by hands, sampling from dried sample by warm air in shadow, sampling from dried sample which dried by dryer. Samples collected and kept in sterile tubes and containers and carried to laboratory and maintained until experiment. Microbial experiments were performed to determine microbial load such as total count, Staphylococcus aureus, coli form, E.coli, mold and yeast. Results showed that in picking and drying stages the contamination amount increases in saffron samples. There was a significant difference between the microbial load of picked up saffron by forceps and by hands, and also between dried saffron by warm air in shadow and by dryer.

Cloning and Expression of D-Threonine Aldolase from Ensifer arboris NBRC100383

D-erythro-cyclohexylserine (D chiral unnatural β-hydroxy amino acid expected for the synthesis of drug for AIDS treatment. To develop a continuous bioconversion system with whole cell biocatalyst of D-threonine aldolase (D genes for the D-erythro-CHS production, D-threonine aldolase gene was amplified from Ensifer arboris 100383 by direct PCR amplication using two degenerated oligonucleotide primers designed based on genomic sequence of Shinorhizobium meliloti Sequence analysis of the cloned DNA fragment revealed one open-reading frame of 1059 bp and 386 amino acids. This putative D-TA gene was cloned into NdeI and EcoRI (pEnsi His-tag sequence or BamHI (pEnsi-DTA[2]) sequence of the pET21(a) vector. The expression level of the cloned gene was extremely overexpressed by E. coli BL21(DE3) transformed with pEnsi-DTA[1] compared to E. coli BL21(DE3) transformed with pEnsi-DTA[2]. When the cells expressing the wild used for D-TA enzyme activity, 12 mM glycine was successfully detected in HPLC analysis. Moreover, the whole cells harbouring the recombinant D-TA was able to synthesize D-erythro of 0.6 mg/ml in a batch reaction.

Straightness Error Compensation Servo-system for Single-axis Linear Motor Stage

Since straightness error of linear motor stage is hardly dependent upon machining accuracy and assembling accuracy, there is limit on maximum realizable accuracy. To cope with this limitation, this paper proposed a servo system to compensate straightness error of a linear motor stage. The servo system is mounted on the slider of the linear motor stage and moves in the direction of the straightness error so as to compensate the error. From position dependency and repeatability of the straightness error of the slider, a feedforward compensation control is applied to the platform servo control. In the consideration of required fine positioning accuracy, a platform driven by an electro-magnetic actuator is suggested and a sliding mode control was applied. The effectiveness of the sliding mode control was verified along with some experimental results.

Some Characteristics of Systolic Arrays

In this paper is investigated a possible optimization of some linear algebra problems which can be solved by parallel processing using the special arrays called systolic arrays. In this paper are used some special types of transformations for the designing of these arrays. We show the characteristics of these arrays. The main focus is on discussing the advantages of these arrays in parallel computation of matrix product, with special approach to the designing of systolic array for matrix multiplication. Multiplication of large matrices requires a lot of computational time and its complexity is O(n3 ). There are developed many algorithms (both sequential and parallel) with the purpose of minimizing the time of calculations. Systolic arrays are good suited for this purpose. In this paper we show that using an appropriate transformation implicates in finding more optimal arrays for doing the calculations of this type.

Improving the Shunt Active Power Filter Performance Using Synchronous Reference Frame PI Based Controller with Anti-Windup Scheme

In this paper the reference current for Voltage Source Converter (VSC) of the Shunt Active Power Filter (SAPF) is generated using Synchronous Reference Frame method, incorporating the PI controller with anti-windup scheme. The proposed method improves the harmonic filtering by compensating the winding up phenomenon caused by the integral term of the PI controller. Using Reference Frame Transformation, the current is transformed from om a - b - c stationery frame to rotating 0 - d - q frame. Using the PI controller, the current in the 0 - d - q frame is controlled to get the desired reference signal. A controller with integral action combined with an actuator that becomes saturated can give some undesirable effects. If the control error is so large that the integrator saturates the actuator, the feedback path becomes ineffective because the actuator will remain saturated even if the process output changes. The integrator being an unstable system may then integrate to a very large value, the phenomenon known as integrator windup. Implementing the integrator anti-windup circuit turns off the integrator action when the actuator saturates, hence improving the performance of the SAPF and dynamically compensating harmonics in the power network. In this paper the system performance is examined with Shunt Active Power Filter simulation model.

Stress Analysis of Adhesively Bonded Double- Lap Joints Subjected to Combined Loading

Adhesively bonded joints are preferred over the conventional methods of joining such as riveting, welding, bolting and soldering. Some of the main advantages of adhesive joints compared to conventional joints are the ability to join dissimilar materials and damage-sensitive materials, better stress distribution, weight reduction, fabrication of complicated shapes, excellent thermal and insulation properties, vibration response and enhanced damping control, smoother aerodynamic surfaces and an improvement in corrosion and fatigue resistance. This paper presents the behavior of adhesively bonded joints subjected to combined thermal loadings, using the numerical methods. The joint configuration considers aluminum as central adherend with six different outer adherends including aluminum, steel, titanium, boronepoxy, unidirectional graphite-epoxy and cross-ply graphite-epoxy and epoxy-based adhesives. Free expansion of the joint in x direction was permitted and stresses in adhesive layer and interfaces calculated for different adherends.

An Intelligent System for Phish Detection, using Dynamic Analysis and Template Matching

Phishing, or stealing of sensitive information on the web, has dealt a major blow to Internet Security in recent times. Most of the existing anti-phishing solutions fail to handle the fuzziness involved in phish detection, thus leading to a large number of false positives. This fuzziness is attributed to the use of highly flexible and at the same time, highly ambiguous HTML language. We introduce a new perspective against phishing, that tries to systematically prove, whether a given page is phished or not, using the corresponding original page as the basis of the comparison. It analyzes the layout of the pages under consideration to determine the percentage distortion between them, indicative of any form of malicious alteration. The system design represents an intelligent system, employing dynamic assessment which accurately identifies brand new phishing attacks and will prove effective in reducing the number of false positives. This framework could potentially be used as a knowledge base, in educating the internet users against phishing.

Study on the Particle Removal Efficiency of Multi Inner Stage Cyclone by CFD Simulation

A new multi inner stage (MIS) cyclone was designed to remove the acidic gas and fine particles produced from electronic industry. To characterize gas flow in MIS cyclone, pressure and velocity distribution were calculated by means of CFD program. Also, the flow locus of fine particles and particle removal efficiency were analyzed by Lagrangian method. When outlet pressure condition was –100mmAq, the efficiency was the best in this study.

Optical Coherence Tomography Combined with the Confocal Microscopy Method and Fluorescence for Class V Cavities Investigations

The purpose of this study is to present a non invasive method for the marginal adaptation evaluation in class V composite restorations. Standardized class V cavities, prepared in human extracted teeth, were filled with Premise (Kerr) composite. The specimens were thermo cycled. The interfaces were examined by Optical Coherence Tomography method (OCT) combined with the confocal microscopy and fluorescence. The optical configuration uses two single mode directional couplers with a superluminiscent diode as the source at 1300 nm. The scanning procedure is similar to that used in any confocal microscope, where the fast scanning is enface (line rate) and the depth scanning is much slower (at the frame rate). Gaps at the interfaces as well as inside the composite resin materials were identified. OCT has numerous advantages which justify its use in vivo as well as in vitro in comparison with conventional techniques.

Extended Dynamic Source Routing Protocol for the Non Co-Operating Nodes in Mobile Adhoc Networks

In this paper, a new approach based on the extent of friendship between the nodes is proposed which makes the nodes to co-operate in an ad hoc environment. The extended DSR protocol is tested under different scenarios by varying the number of malicious nodes and node moving speed. It is also tested varying the number of nodes in simulation used. The result indicates the achieved throughput by extended DSR is greater than the standard DSR and indicates the percentage of malicious drops over total drops are less in the case of extended DSR than the standard DSR.

Evaluation of Shear Strength Parameters of Amended Loess through Using Common Admixtures in Gorgan, Iran

Non-saturated soils that while saturation greatly decrease their volume, have sudden settlement due to increasing humidity, fracture and structural crack are called loess soils. Whereas importance of civil projects including: dams, canals and constructions bearing this type of soil and thereof problems, it is required for carrying out more research and study in relation to loess soils. This research studies shear strength parameters by using grading test, Atterberg limit, compression, direct shear and consolidation and then effect of using cement and lime additives on stability of loess soils is studied. In related tests, lime and cement are separately added to mixed ratios under different percentages of soil and for different times the stabilized samples are processed and effect of aforesaid additives on shear strength parameters of soil is studied. Results show that upon passing time the effect of additives and collapsible potential is greatly decreased and upon increasing percentage of cement and lime the maximum dry density is decreased; however, optimum humidity is increased. In addition, liquid limit and plastic index is decreased; however, plastic index limit is increased. It is to be noted that results of direct shear test reveal increasing shear strength of soil due to increasing cohesion parameter and soil friction angle.

Competitiveness of the Baltic States within the International Ratings

Baltic competitiveness is quite controversial. In a situation with the rapid structural changes, economy develops in balance very rarely - in different fields will always be more rapid changes in another more stagnation. Analyzing different economic indices developed by international organizations the situation in three Baltic countries are described from a different competitiveness positions highlighting strengths and weaknesses of each country. Exploring the openness of the economy, it is possible to observe certain risks included in the reports describing situation of competitiveness where government policies competing in the tax system, the rates of labour market policies, investment environment, etc. This is a very important factor resulting in competitive advantage. Baltic countries are still at a weak position from a technological perspective, and need to borrow the knowledge and technology from more developed countries.