Drivers of Customer Satisfaction in an Industrial Company from Marketing Aspect

One of the basic concepts in marketing is the concept of meeting customers- needs. Since customer satisfaction is essential for lasting survival and development of a business, screening and observing customer satisfaction and recognizing its underlying factors must be one of the key activities of every business. The purpose of this study is to recognize the drivers that effect customer satisfaction in a business-to-business situation in order to improve marketing activities. We conducted a survey in which 93 business customers of a manufacturer of Diesel Generator in Iran participated and they talked about their ideas and satisfaction of supplier-s services related to its products. We developed the measures for drivers of satisfaction first by as investigative research (by means of feedback from executives and customers of sponsoring firm). Then based on these measures, we created a mail survey, and asked the respondents to explain their opinion about the sponsoring firm which was a supplier of diesel generator and similar products. Furthermore, the survey required the participants to mention their functional areas and their company features. In Conclusion we found that there are three drivers for customer satisfaction, which are reliability, information about product, and commercial features. Buyers/users from different functional areas attribute different degree of importance to the last two drivers. For instance, people from buying and management areas believe that commercial features are more important than information about products. But people in engineering, maintenance and production areas believe that having information about products is more important than commercial aspects. Marketing experts should consider the attribute of customers regarding information about the product and commercial features to improve market share.

Involving Action Potential Morphology on a New Cellular Automata Model of Cardiac Action Potential Propagation

Computer modeling has played a unique role in understanding electrocardiography. Modeling and simulating cardiac action potential propagation is suitable for studying normal and pathological cardiac activation. This paper presents a 2-D Cellular Automata model for simulating action potential propagation in cardiac tissue. We demonstrate a novel algorithm in order to use minimum neighbors. This algorithm uses the summation of the excitability attributes of excited neighboring cells. We try to eliminate flat edges in the result patterns by inserting probability to the model. We also preserve the real shape of action potential by using linear curve fitting of one well known electrophysiological model.

Integrating Decision Tree and Spatial Cluster Analysis for Landslide Susceptibility Zonation

Landslide susceptibility map delineates the potential zones for landslide occurrence. Previous works have applied multivariate methods and neural networks for mapping landslide susceptibility. This study proposed a new approach to integrate decision tree model and spatial cluster statistic for assessing landslide susceptibility spatially. A total of 2057 landslide cells were digitized for developing the landslide decision tree model. The relationships of landslides and instability factors were explicitly represented by using tree graphs in the model. The local Getis-Ord statistics were used to cluster cells with high landslide probability. The analytic result from the local Getis-Ord statistics was classed to create a map of landslide susceptibility zones. The map was validated using new landslide data with 482 cells. Results of validation show an accuracy rate of 86.1% in predicting new landslide occurrence. This indicates that the proposed approach is useful for improving landslide susceptibility mapping.

System Performance Comparison of Turbo and Trellis Coded Optical CDMA Systems

In this paper, we have compared the performance of a Turbo and Trellis coded optical code division multiple access (OCDMA) system. The comparison of the two codes has been accomplished by employing optical orthogonal codes (OOCs). The Bit Error Rate (BER) performances have been compared by varying the code weights of address codes employed by the system. We have considered the effects of optical multiple access interference (OMAI), thermal noise and avalanche photodiode (APD) detector noise. Analysis has been carried out for the system with and without double optical hard limiter (DHL). From the simulation results it is observed that a better and distinct comparison can be drawn between the performance of Trellis and Turbo coded systems, at lower code weights of optical orthogonal codes for a fixed number of users. The BER performance of the Turbo coded system is found to be better than the Trellis coded system for all code weights that have been considered for the simulation. Nevertheless, the Trellis coded OCDMA system is found to be better than the uncoded OCDMA system. Trellis coded OCDMA can be used in systems where decoding time has to be kept low, bandwidth is limited and high reliability is not a crucial factor as in local area networks. Also the system hardware is less complex in comparison to the Turbo coded system. Trellis coded OCDMA system can be used without significant modification of the existing chipsets. Turbo-coded OCDMA can however be employed in systems where high reliability is needed and bandwidth is not a limiting factor.

Intelligent Fuzzy Input Estimator for the Input Force on the Rigid Bar Structure System

The intelligent fuzzy input estimator is used to estimate the input force of the rigid bar structural system in this study. The fuzzy Kalman filter without the input term and the fuzzy weighting recursive least square estimator are two main portions of this method. The practicability and accuracy of the proposed method were verified with numerical simulations from which the input forces of a rigid bar structural system were estimated from the output responses. In order to examine the accuracy of the proposed method, a rigid bar structural system is subjected to periodic sinusoidal dynamic loading. The excellent performance of this estimator is demonstrated by comparing it with the use of difference weighting function and improper the initial process noise covariance. The estimated results have a good agreement with the true values in all cases tested.

Working Motivation Factors Affecting Job Performance Effectiveness

The purpose of this paper was to study motivation factors affecting job performance effectiveness. This paper drew upon data collected from an Internal Audit Staffs of Internal Audit Line of Head Office of Krung Thai Public Company Limited. Statistics used included frequency, percentage, mean and standard deviation, t-test, and one-way ANOVA test. The finding revealed that the majority of the respondents were female of 46 years of age and over, married and live together, hold a bachelor degree, with an average monthly income over 70,001 Baht. The majority of respondents had over 15 years of work experience. They generally had high working motivation as well as high job performance effectiveness. The hypotheses testing disclosed that employees with different working status had different level of job performance effectiveness at a 0.01 level of significance. Working motivation factors had an effect on job performance in the same direction with high level. Individual working motivation included working completion, reorganization, working progression, working characteristic, opportunity, responsibility, management policy, supervision, relationship with their superior, relationship with co-worker, working position, working stability, safety, privacy, working conditions, and payment. All of these factors related to job performance effectiveness in the same direction with medium level.

Sliding Mode Control Based on Backstepping Approach for an UAV Type-Quadrotor

In this paper; we are interested principally in dynamic modelling of quadrotor while taking into account the high-order nonholonomic constraints in order to develop a new control scheme as well as the various physical phenomena, which can influence the dynamics of a flying structure. These permit us to introduce a new state-space representation. After, the use of Backstepping approach for the synthesis of tracking errors and Lyapunov functions, a sliding mode controller is developed in order to ensure Lyapunov stability, the handling of all system nonlinearities and desired tracking trajectories. Finally simulation results are also provided in order to illustrate the performances of the proposed controller.

An Assessment of the Small Hydropower Potential of Sisakht Region of Yasuj

Energy generated by the force of water in hydropower can provide a more sustainable, non-polluting alternative to fossil fuels, along with other renewable sources of energy, such as wind, solar and tidal power, bio energy and geothermal energy. Small scale hydroelectricity in Iran is well suited for “off-grid" rural electricity applications, while other renewable energy sources, such as wind, solar and biomass, can be beneficially used as fuel for pumping groundwater for drinking and small scale irrigation in remote rural areas or small villages. Small Hydro Power plants in Iran have very low operating and maintenance costs because they consume no fossil or nuclear fuel and do not involve high temperature processes. The equipment is relatively simple to operate and maintain. Hydropower equipment can adjust rapidly to load changes. The extended equipment life provides significant economic advantages. Some hydroelectric plants installed 100 years ago still operate reliably. The Polkolo river is located on Karun basin at southwest of Iran. Situation and conditions of Polkolo river are evaluated for construction of small hydropower in this article. The topographical conditions and the existence of permanent water from springs provide the suitability to install hydroelectric power plants on the river Polkolo. The cascade plant consists of 9 power plants connected with each other and is having the total head as 1100m and discharge about 2.5cubic meter per second. The annual production of energy is 105.5 million kwh.

Modular Hybrid Robots for Safe Human-Robot Interaction

The paper considers a novel modular and intrinsically safe redundant robotic system with biologically inspired actuators (pneumatic artificial muscles and rubber bellows actuators). Similarly to the biological systems, the stiffness of the internal parallel modules, representing 2 DOF joints in the serial robotic chains, is controlled by co-activation of opposing redundant actuator groups in the null-space of the module Jacobian, without influencing the actual robot position. The decoupled position/stiffness control allows the realization of variable joint stiffness according to different force-displacement relationships. The variable joint stiffness, as well as limited pneumatic muscle/bellows force ability, ensures internal system safety that is crucial for development of human-friendly robots intended for human-robot collaboration. The initial experiments with the system prototype demonstrate the capabilities of independently, simultaneously controlling both joint (Cartesian) motion and joint stiffness. The paper also presents the possible industrial applications of snake-like robots built using the new modules.

Reliability Analysis in Electrical Distribution System Considering Preventive Maintenance Applications on Circuit Breakers

This paper presents the results of a preventive maintenance application-based study and modeling of failure rates in breakers of electrical distribution systems. This is a critical issue in the reliability assessment of a system. In the analysis conducted in this paper, the impacts of failure rate variations caused by a preventive maintenance are examined. This is considered as a part of a Reliability Centered Maintenance (RCM) application program. A number of load point reliability indices is derived using the mathematical model of the failure rate, which is established using the observed data in a distribution system.

Debye Layer Confinement of Nucleons in Nuclei by Laser Ablated Plasma

Following the laser ablation studies leading to a theory of nuclei confinement by a Debye layer mechanism, we present here numerical evaluations for the known stable nuclei where the Coulomb repulsion is included as a rather minor component especially for lager nuclei. In this research paper the required physical conditions for the formation and stability of nuclei particularly endothermic nuclei with mass number greater than to which is an open astrophysical question have been investigated. Using the Debye layer mechanism, nuclear surface energy, Fermi energy and coulomb repulsion energy it is possible to find conditions under which the process of nucleation is permitted in early universe. Our numerical calculations indicate that about 200 second after the big bang at temperature of about 100 KeV and subrelativistic region with nucleon density nearly equal to normal nuclear density namely, 10cm all endothermic and exothermic nuclei have been formed.

Advanced Robust PDC Fuzzy Control of Nonlinear Systems

This paper introduces a new method called ARPDC (Advanced Robust Parallel Distributed Compensation) for automatic control of nonlinear systems. This method improves a quality of robust control by interpolating of robust and optimal controller. The weight of each controller is determined by an original criteria function for model validity and disturbance appreciation. ARPDC method is based on nonlinear Takagi-Sugeno (T-S) fuzzy systems and Parallel Distributed Compensation (PDC) control scheme. The relaxed stability conditions of ARPDC control of nominal system have been derived. The advantages of presented method are demonstrated on the inverse pendulum benchmark problem. From comparison between three different controllers (robust, optimal and ARPDC) follows, that ARPDC control is almost optimal with the robustness close to the robust controller. The results indicate that ARPDC algorithm can be a good alternative not only for a robust control, but in some cases also to an adaptive control of nonlinear systems.

The Transfer of Energy Technologies in a Developing Country Context Towards Improved Practice from Past Successes and Failures

Technology transfer of renewable energy technologies is very often unsuccessful in the developing world. Aside from challenges that have social, economic, financial, institutional and environmental dimensions, technology transfer has generally been misunderstood, and largely seen as mere delivery of high tech equipment from developed to developing countries or within the developing world from R&D institutions to society. Technology transfer entails much more, including, but not limited to: entire systems and their component parts, know-how, goods and services, equipment, and organisational and managerial procedures. Means to facilitate the successful transfer of energy technologies, including the sharing of lessons are subsequently extremely important for developing countries as they grapple with increasing energy needs to sustain adequate economic growth and development. Improving the success of technology transfer is an ongoing process as more projects are implemented, new problems are encountered and new lessons are learnt. Renewable energy is also critical to improve the quality of lives of the majority of people in developing countries. In rural areas energy is primarily traditional biomass. The consumption activities typically occur in an inefficient manner, thus working against the notion of sustainable development. This paper explores the implementation of technology transfer in the developing world (sub-Saharan Africa). The focus is necessarily on RETs since most rural energy initiatives are RETs-based. Additionally, it aims to highlight some lessons drawn from the cited RE projects and identifies notable differences where energy technology transfer was judged to be successful. This is done through a literature review based on a selection of documented case studies which are judged against the definition provided for technology transfer. This paper also puts forth research recommendations that might contribute to improved technology transfer in the developing world. Key findings of this paper include: Technology transfer cannot be complete without satisfying pre-conditions such as: affordability, maintenance (and associated plans), knowledge and skills transfer, appropriate know how, ownership and commitment, ability to adapt technology, sound business principles such as financial viability and sustainability, project management, relevance and many others. It is also shown that lessons are learnt in both successful and unsuccessful projects.

Multi-Hazard Risk Assessment and Management in Tourism Industry- A Case Study from the Island of Taiwan

Global environmental changes lead to increased frequency and scale of natural disaster, Taiwan is under the influence of global warming and extreme weather. Therefore, the vulnerability was increased and variability and complexity of disasters is relatively enhanced. The purpose of this study is to consider the source and magnitude of hazard characteristics on the tourism industry. Using modern risk management concepts, integration of related domestic and international basic research, this goes beyond the Taiwan typhoon disaster risk assessment model and evaluation of loss. This loss evaluation index system considers the impact of extreme weather, in particular heavy rain on the tourism industry in Taiwan. Consider the extreme climate of the compound impact of disaster for the tourism industry; we try to make multi-hazard risk assessment model, strategies and suggestions. Related risk analysis results are expected to provide government department, the tourism industry asset owners, insurance companies and banking include tourist disaster risk necessary information to help its tourism industry for effective natural disaster risk management.

Antioxidant and Aِntimicrobial Properties of Peptides as Bioactive Components in Beef Burger

Dried soy protein hydrolysate powder was added to the burger in order to enhance the oxidative stability as well as decreases the microbial spoilage. The soybean bioactive compounds (soy protein hydrolysate) as antioxidant and antimicrobial were added at level of 1, 2 and 3 %.Chemical analysis and physical properties were affected by protein hydrolysate addition. The TBA values were significantly affected (P < 0.05) by the storage period and the level of soy protein hydrolysate. All the tested soybean protein hydrolysate additives showed strong antioxidant properties. Samples of soybean protein hydrolysate showed the lowest (P < 0.05) TBA values at each time of storage. The counts of all determined microbiological indicators were significantly (P < 0.05) affected by the addition of the soybean protein hydrolysate. Decreasing trends of different extent were also observed in samples of the treatments for total viable counts, Coliform, Staphylococcus aureus, yeast and molds. Storage period was being significantly (P < 0.05) affected on microbial counts in all samples Staphylococcus aureus were the most sensitive microbe followed by Coliform group of the sample containing protein hydrolysate, while molds and yeast count showed a decreasing trend but not significant (P < 0.05) until the end of the storage period compared with control sample. Sensory attributes were also performed, added protein hydrolysate exhibits beany flavor which was clear about samples of 3% protein hydrolysate.

Probability and Instruction Effects in Syllogistic Conditional Reasoning

The main aim of this study was to examine whether people understand indicative conditionals on the basis of syntactic factors or on the basis of subjective conditional probability. The second aim was to investigate whether the conditional probability of q given p depends on the antecedent and consequent sizes or derives from inductive processes leading to establish a link of plausible cooccurrence between events semantically or experientially associated. These competing hypotheses have been tested through a 3 x 2 x 2 x 2 mixed design involving the manipulation of four variables: type of instructions (“Consider the following statement to be true", “Read the following statement" and condition with no conditional statement); antecedent size (high/low); consequent size (high/low); statement probability (high/low). The first variable was between-subjects, the others were within-subjects. The inferences investigated were Modus Ponens and Modus Tollens. Ninety undergraduates of the Second University of Naples, without any prior knowledge of logic or conditional reasoning, participated in this study. Results suggest that people understand conditionals in a syntactic way rather than in a probabilistic way, even though the perception of the conditional probability of q given p is at least partially involved in the conditionals- comprehension. They also showed that, in presence of a conditional syllogism, inferences are not affected by the antecedent or consequent sizes. From a theoretical point of view these findings suggest that it would be inappropriate to abandon the idea that conditionals are naturally understood in a syntactic way for the idea that they are understood in a probabilistic way.

GenCos- Optimal Bidding Strategy Considering Market Power and Transmission Constraints: A Cournot-based Model

Restructured electricity markets may provide opportunities for producers to exercise market power maintaining prices in excess of competitive levels. In this paper an oligopolistic market is presented that all Generation Companies (GenCos) bid in a Cournot model. Genetic algorithm (GA) is applied to obtain generation scheduling of each GenCo as well as hourly market clearing prices (MCP). In order to consider network constraints a multiperiod framework is presented to simulate market clearing mechanism in which the behaviors of market participants are modelled through piecewise block curves. A mixed integer linear programming (MILP) is employed to solve the problem. Impacts of market clearing process on participants- characteristic and final market prices are presented. Consequently, a novel multi-objective model is addressed for security constrained optimal bidding strategy of GenCos. The capability of price-maker GenCos to alter MCP is evaluated through introducing an effective-supply curve. In addition, the impact of exercising market power on the variation of market characteristics as well as GenCos scheduling is studied.

On the Robust Stability of Homogeneous Perturbed Large-Scale Bilinear Systems with Time Delays and Constrained Inputs

The stability test problem for homogeneous large-scale perturbed bilinear time-delay systems subjected to constrained inputs is considered in this paper. Both nonlinear uncertainties and interval systems are discussed. By utilizing the Lyapunove equation approach associated with linear algebraic techniques, several delay-independent criteria are presented to guarantee the robust stability of the overall systems. The main feature of the presented results is that although the Lyapunov stability theorem is used, they do not involve any Lyapunov equation which may be unsolvable. Furthermore, it is seen the proposed schemes can be applied to solve the stability analysis problem of large-scale time-delay systems.

Optimal Allocation of FACTS Devices for ATC Enhancement Using Bees Algorithm

In this paper, a novel method using Bees Algorithm is proposed to determine the optimal allocation of FACTS devices for maximizing the Available Transfer Capability (ATC) of power transactions between source and sink areas in the deregulated power system. The algorithm simultaneously searches the FACTS location, FACTS parameters and FACTS types. Two types of FACTS are simulated in this study namely Thyristor Controlled Series Compensator (TCSC) and Static Var Compensator (SVC). A Repeated Power Flow with FACTS devices including ATC is used to evaluate the feasible ATC value within real and reactive power generation limits, line thermal limits, voltage limits and FACTS operation limits. An IEEE30 bus system is used to demonstrate the effectiveness of the algorithm as an optimization tool to enhance ATC. A Genetic Algorithm technique is used for validation purposes. The results clearly indicate that the introduction of FACTS devices in a right combination of location and parameters could enhance ATC and Bees Algorithm can be efficiently used for this kind of nonlinear integer optimization.

The Effect of e-learning on the Promotion of Optoelectronics Technology and Daily Livings Literacy among Students in Universities of Technology

This study aims to analyze the effect of e-learning on photonics technology and daily livings among college students. The course contents of photonics technology and daily livings are first drafted based on research discussions and expert interviews. Having expert questionnaires with Delphi Technique for three times, the knowledge units and items for the course of photonics technology and daily livings are established. The e-learning materials and the drafts of instructional strategies, academic achievement, and learning attitude scales are then developed. With expert inspection, reliability and validity test, and experimental instructions, the scales and the material are further revised. Finally, the formal instructions are implemented to test the effect of different instructional methods on the academic achievement of photonics technology and daily livings among students in universities of technology. The research results show that e-learning could effectively promote academic achievement and learning attitude, and the students with e-learning obviously outperform the ones with trandition instructions.